📏 Essential Formulas — Complete Formula Bank

ℹ️Quick Reference Guide
Complete formula reference with micro-examples for quick contest lookup. Use this as your go-to resource during practice and contests.

🗂️ Table of Contents

🔢 Basic Algebra

💡💡 Pro Tip
Master these fundamental patterns first—they form the foundation for all advanced algebra!

Factoring Patterns

⚠️⚠️ Critical for AMC
These factoring patterns appear in 80% of AMC algebra problems!
PatternFormulaMicro-ExampleDifficulty
Difference of squares$a^2 - b^2 = (a-b)(a+b)$$x^2 - 9 = (x-3)(x+3)$⭐⭐
Perfect square$(a \pm b)^2 = a^2 \pm 2ab + b^2$$(x+2)^2 = x^2 + 4x + 4$⭐⭐
Sum of cubes$a^3 + b^3 = (a+b)(a^2-ab+b^2)$$x^3 + 8 = (x+2)(x^2-2x+4)$⭐⭐⭐
Difference of cubes$a^3 - b^3 = (a-b)(a^2+ab+b^2)$$x^3 - 27 = (x-3)(x^2+3x+9)$⭐⭐⭐
Sophie Germain$a^4 + 4b^4 = (a^2+2ab+2b^2)(a^2-2ab+2b^2)$$x^4 + 4 = (x^2+2x+2)(x^2-2x+2)$⭐⭐⭐⭐

Order of Operations

📝📝 PEMDAS Rule
Parentheses → Exponents → Multiplication/Division → Addition/Subtraction

Example Walkthrough: $$2 + 3 \times 4^2 = 2 + 3 \times 16 = 2 + 48 = 50$$

Step-by-step:

  1. Exponents first: $4^2 = 16$
  2. Multiplication: $3 \times 16 = 48$
  3. Addition: $2 + 48 = 50$

🎯 Quadratics

💡🎯 Contest Strategy
Quadratic problems are high-frequency in AMC contests. Master both the formula and vertex form!

Quadratic Formula & Discriminant

The Quadratic Formula: $$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$

ConceptFormulaMicro-ExampleUsage
Quadratic formula$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$$x^2 - 5x + 6 = 0$: $x = \frac{5 \pm \sqrt{25-24}}{2} = 2, 3$When factoring fails
Discriminant$\Delta = b^2 - 4ac$$x^2 - 4x + 4 = 0$: $\Delta = 16 - 16 = 0$ (one root)Quick root analysis
Nature of roots$\Delta > 0$: 2 real, $\Delta = 0$: 1 real, $\Delta < 0$: 2 complex$x^2 + 1 = 0$: $\Delta = -4 < 0$ (no real roots)Problem classification