🎯 Absolute Value Casework — Breakpoints & Symmetry
Essential technique for solving absolute value equations and inequalities.
🎯 Recognition Cues
- “Solve for $x$” — Equations with absolute value signs
- “Find all real solutions” — Absolute value equations often have multiple cases
- $|x|$, $|x-a|$ — Absolute value expressions
- “For what values” — Absolute value inequalities
📚 Template Solutions
Basic Absolute Value Equation
| Step | Action | Example |
|---|---|---|
| 1 | Identify breakpoints | $ |
| 2 | Create cases | Case 1: $x \geq 2$; Case 2: $x < 2$ |
| 3 | Solve each case | Case 1: $x-2 = 3$ → $x = 5$; Case 2: $-(x-2) = 3$ → $x = -1$ |
| 4 | Check solutions | $x = 5$: $ |
Multiple Absolute Values
| Step | Action | Example |
|---|---|---|
| 1 | Find all breakpoints | $ |
| 2 | Create intervals | $x < -2$; $-2 \leq x < 1$; $x \geq 1$ |
| 3 | Solve each interval | Use appropriate signs for each interval |
| 4 | Check solutions | Verify each solution in original equation |
🎯 Worked Examples
Example 1: Basic Absolute Value
Problem: Solve $|x-3| = 7$
Solution:
- Breakpoint: $x = 3$
- Case 1 ($x \geq 3$): $x-3 = 7$ → $x = 10$
- Case 2 ($x < 3$): $-(x-3) = 7$ → $-x+3 = 7$ → $x = -4$
- Check: $x = 10$: $|10-3| = 7$ ✓; $x = -4$: $|-4-3| = 7$ ✓
- Answer: $x = 10$ or $x = -4$
Example 2: Multiple Absolute Values
Problem: Solve $|x-1| + |x+2| = 5$
Solution:
- Breakpoints: $x = 1$ and $x = -2$
- Create intervals: $x < -2$; $-2 \leq x < 1$; $x \geq 1$
- Case 1 ($x < -2$): $-(x-1) - (x+2) = 5$ → $-x+1-x-2 = 5$ → $-2x-1 = 5$ → $x = -3$
- Case 2 ($-2 \leq x < 1$): $-(x-1) + (x+2) = 5$ → $-x+1+x+2 = 5$ → $3 = 5$ (no solution)
- Case 3 ($x \geq 1$): $(x-1) + (x+2) = 5$ → $x-1+x+2 = 5$ → $2x+1 = 5$ → $x = 2$
- Check: $x = -3$: $|-3-1| + |-3+2| = 4 + 1 = 5$ ✓; $x = 2$: $|2-1| + |2+2| = 1 + 4 = 5$ ✓
- Answer: $x = -3$ or $x = 2$
Example 3: Absolute Value Inequality
Problem: Solve $|x-2| < 3$
Solution:
- Rewrite as compound inequality: $-3 < x-2 < 3$
- Add 2 to all parts: $-3 + 2 < x < 3 + 2$ → $-1 < x < 5$
- Answer: $x \in (-1, 5)$
⚠️ Common Pitfalls
Pitfall: Incorrect case analysis
- Fix: Always consider all possible combinations of signs
- Example: $|x-1| + |x+2|$ has 4 possible sign combinations, not 2
Pitfall: Forgetting to check solutions
- Fix: Always substitute solutions back into original equation
- Example: $|x-1| + |x+2| = 5$ might have extraneous solutions
Pitfall: Incorrect inequality direction
- Fix: $|x| < a$ means $-a < x < a$ (and), $|x| > a$ means $x < -a$ or $x > a$ (or)
- Example: $|x| < 2$ is $-2 < x < 2$, not $x < 2$ or $x > -2$
🎯 AMC-Style Worked Example
Problem: Find all real values of $x$ such that $|x^2 - 4| = 3$.
Solution:
- Set up cases: $x^2 - 4 = 3$ or $x^2 - 4 = -3$
- Case 1: $x^2 - 4 = 3$ → $x^2 = 7$ → $x = \pm\sqrt{7}$
- Case 2: $x^2 - 4 = -3$ → $x^2 = 1$ → $x = \pm 1$
- Check all solutions:
- $x = \sqrt{7}$: $|(\sqrt{7})^2 - 4| = |7 - 4| = 3$ ✓
- $x = -\sqrt{7}$: $|(-\sqrt{7})^2 - 4| = |7 - 4| = 3$ ✓
- $x = 1$: $|1^2 - 4| = |1 - 4| = 3$ ✓
- $x = -1$: $|(-1)^2 - 4| = |1 - 4| = 3$ ✓
- Answer: $x = \pm\sqrt{7}$ or $x = \pm 1$
Key insight: Absolute value equations often lead to multiple cases that must all be checked.
🔗 Related Patterns
- Case Analysis — Absolute value problems require careful case analysis
- Breakpoints — Find all values where absolute value arguments equal zero
- Symmetry — Absolute value expressions often have symmetry
- Inequalities — Absolute value inequalities use similar techniques
📝 Practice Checklist
- Master basic absolute value equations
- Practice multiple absolute value problems
- Learn case analysis technique
- Practice absolute value inequalities
- Understand breakpoint identification
- Work on speed and accuracy
Next: Systems Linear & Nonlinear | Prev: Radical Equations | Back: Problem Types Overview