🔢 Exponential & Log Tricks — Growth Comparison & Base Alignment

Essential techniques for solving exponential and logarithmic problems efficiently.

🎯 Recognition Cues

  • “Solve for $x$” — Exponential or logarithmic equations
  • “Compare” — Growth rate comparisons
  • “Find the value” — Complex exponential/logarithmic expressions
  • $a^x = b$ — Exponential equations
  • $\log_a x = b$ — Logarithmic equations

📚 Template Solutions

Exponential Equations

TypeMethodExample
Same base$a^x = a^y$ → $x = y$$2^x = 2^3$ → $x = 3$
Different baseTake logarithm$2^x = 3$ → $x = \frac{\log 3}{\log 2}$
Quadratic formSubstitute $u = a^x$$2^{2x} - 5 \cdot 2^x + 6 = 0$ → $u^2 - 5u + 6 = 0$

Logarithmic Equations

TypeMethodExample
Same base$\log_a x = \log_a y$ → $x = y$$\log_2 x = \log_2 3$ → $x = 3$
Different baseUse change of base$\log_2 x = \log_3 9$ → $x = 2^{\log_3 9}$
Product/quotientUse log properties$\log(xy) = \log x + \log y$

Growth Comparison

TechniqueWhen to UseExample
Compare basesSame exponent$2^3$ vs $3^3$
Compare exponentsSame base$2^5$ vs $2^3$
Use logarithmsDifferent base and exponent$2^3$ vs $3^2$

🎯 Worked Examples

Example 1: Basic Exponential Equation

Problem: Solve $2^x = 8$

Solution:

  1. Method 1: Express as same base: $2^x = 2^3$ → $x = 3$
  2. Method 2: Take logarithm: $x = \frac{\log 8}{\log 2} = \frac{\log 2^3}{\log 2} = \frac{3\log 2}{\log 2} = 3$
  3. Answer: $x = 3$

Example 2: Quadratic Form

Problem: Solve $3^{2x} - 4 \cdot 3^x + 3 = 0$

Solution:

  1. Substitute $u = 3^x$: $u^2 - 4u + 3 = 0$
  2. Factor: $(u-1)(u-3) = 0$ → $u = 1$ or $u = 3$
  3. Solve: $3^x = 1$ → $x = 0$; $3^x = 3$ → $x = 1$
  4. Answer: $x = 0$ or $x = 1$

Example 3: Growth Comparison

Problem: Compare $2^{100}$ and $100^2$

Solution:

  1. Take logarithms: $\log(2^{100}) = 100\log 2 \approx 100 \cdot 0.301 = 30.1$
  2. Take logarithms: $\log(100^2) = 2\log 100 = 2 \cdot 2 = 4$
  3. Compare: $30.1 > 4$, so $2^{100} > 100^2$
  4. Answer: $2^{100} > 100^2$

⚠️ Common Pitfalls

Pitfall: Forgetting domain restrictions

  • Fix: Check that arguments of logarithms are positive
  • Example: $\log(x-1)$ requires $x > 1$

Pitfall: Incorrect logarithm properties

  • Fix: Remember $\log(xy) = \log x + \log y$, not $\log(x+y) = \log x + \log y$
  • Example: $\log(2+3) = \log 5$, not $\log 2 + \log 3 = \log 6$

Pitfall: Sign errors in change of base

  • Fix: $\log_a x = \frac{\log_b x}{\log_b a}$, not $\frac{\log_b a}{\log_b x}$
  • Example: $\log_2 8 = \frac{\log_{10} 8}{\log_{10} 2}$, not $\frac{\log_{10} 2}{\log_{10} 8}$

🎯 AMC-Style Worked Example

Problem: Solve $2^{x+1} + 2^{x-1} = 5$.

Solution:

  1. Factor out common term: $2^{x-1}(2^2 + 1) = 5$
  2. Simplify: $2^{x-1} \cdot 5 = 5$
  3. Divide by 5: $2^{x-1} = 1$
  4. Express as same base: $2^{x-1} = 2^0$
  5. Equate exponents: $x-1 = 0$
  6. Solve: $x = 1$
  7. Verify: $2^{1+1} + 2^{1-1} = 2^2 + 2^0 = 4 + 1 = 5$ ✓
  8. Answer: $x = 1$

Key insight: Factoring out common exponential terms often simplifies the equation.

  • Exponent Rules — Essential for manipulating exponential expressions
  • Logarithm Properties — Needed for solving logarithmic equations
  • Domain — Exponential and logarithmic functions have domain restrictions
  • Growth — Exponential functions model growth and decay

📝 Practice Checklist

  • Master exponential equation solving
  • Practice logarithmic equation solving
  • Learn change of base technique
  • Practice domain restrictions
  • Understand growth comparisons
  • Work on speed and accuracy

Next: Word Problems | Prev: Functional Equation Templates | Back: Problem Types Overview