🔢 Factoring Templates — Classic Patterns & Techniques

Essential factoring patterns that appear frequently in AMC problems.

🎯 Recognition Cues

  • “Factor completely” — Look for all possible factors
  • “Simplify” — Often requires factoring first
  • “Find the value of” — May need to factor to reveal structure
  • Polynomial expressions — Check for common patterns

📚 Template Solutions

Basic Patterns

PatternTemplateExample
Difference of squares$a^2 - b^2 = (a-b)(a+b)$$x^2 - 9 = (x-3)(x+3)$
Perfect square$(a \pm b)^2 = a^2 \pm 2ab + b^2$$x^2 + 6x + 9 = (x+3)^2$
Sum of cubes$a^3 + b^3 = (a+b)(a^2-ab+b^2)$$x^3 + 8 = (x+2)(x^2-2x+4)$
Difference of cubes$a^3 - b^3 = (a-b)(a^2+ab+b^2)$$x^3 - 27 = (x-3)(x^2+3x+9)$

Advanced Patterns

PatternTemplateExample
Sophie Germain$a^4 + 4b^4 = (a^2+2ab+2b^2)(a^2-2ab+2b^2)$$x^4 + 4 = (x^2+2x+2)(x^2-2x+2)$
Trinomial$x^2 + (a+b)x + ab = (x+a)(x+b)$$x^2 + 5x + 6 = (x+2)(x+3)$
Grouping$ax + ay + bx + by = (a+b)(x+y)$$2x + 2y + 3x + 3y = 5(x+y)$
Perfect square trinomial$a^2 + 2ab + b^2 = (a+b)^2$$4x^2 + 12x + 9 = (2x+3)^2$

🎯 Worked Examples

Example 1: Basic Factoring

Problem: Factor completely: $x^2 - 16$

Solution:

  1. Recognize: Difference of squares pattern
  2. Apply: $x^2 - 16 = x^2 - 4^2 = (x-4)(x+4)$
  3. Answer: $(x-4)(x+4)$

Example 2: Sophie Germain

Problem: Factor completely: $x^4 + 4$

Solution:

  1. Recognize: Sophie Germain pattern
  2. Apply: $x^4 + 4 = (x^2)^2 + 4(1)^2 = (x^2+2x+2)(x^2-2x+2)$
  3. Answer: $(x^2+2x+2)(x^2-2x+2)$

Example 3: Grouping

Problem: Factor completely: $2x^2 + 6x + 3x + 9$

Solution:

  1. Recognize: Grouping pattern
  2. Group: $(2x^2 + 6x) + (3x + 9) = 2x(x+3) + 3(x+3)$
  3. Factor out common: $(2x+3)(x+3)$
  4. Answer: $(2x+3)(x+3)$

⚠️ Common Pitfalls

Pitfall: Forgetting to check for common factors first

  • Fix: Always factor out GCF before applying patterns
  • Example: $6x^2 - 24 = 6(x^2 - 4) = 6(x-2)(x+2)$

Pitfall: Incorrect signs in perfect squares

  • Fix: Remember $(a-b)^2 = a^2 - 2ab + b^2$
  • Example: $(x-3)^2 = x^2 - 6x + 9$, not $x^2 + 6x + 9$

Pitfall: Confusing sum and difference of cubes

  • Fix: Sum has negative middle term, difference has positive
  • Example: $a^3 + b^3 = (a+b)(a^2-ab+b^2)$ vs $a^3 - b^3 = (a-b)(a^2+ab+b^2)$

🎯 AMC-Style Worked Example

Problem: Factor completely: $x^4 + 4x^2 + 4$

Solution:

  1. Recognize: This looks like a perfect square trinomial
  2. Check: $x^4 + 4x^2 + 4 = (x^2)^2 + 2(x^2)(2) + 2^2$
  3. Apply: $(x^2 + 2)^2$
  4. Check further: $x^2 + 2$ doesn’t factor over reals
  5. Answer: $(x^2 + 2)^2$

Key insight: Treat $x^2$ as a single variable to recognize the pattern.

  • Rational Expressions — Factoring is essential for simplifying fractions
  • Quadratic Equations — Factoring is often the fastest solution method
  • Systems of Equations — Factoring can reveal substitution opportunities
  • Polynomial Theory — Factoring connects to remainder/factor theorems

📝 Practice Checklist

  • Master all basic factoring patterns
  • Practice Sophie Germain identity
  • Learn grouping techniques
  • Practice with negative signs
  • Work on speed and accuracy
  • Learn to recognize patterns quickly

Next: Discriminant & Parameter Sweeps | Back: Problem Types Overview