🔢 Radical Equations — Isolate, Square, Verify

Essential technique for solving equations with square roots and other radicals.

🎯 Recognition Cues

  • “Solve for $x$” — Equations with square roots
  • “Find all real solutions” — Radical equations often have domain restrictions
  • Square root expressions — $\sqrt{x}$, $\sqrt{x+1}$, etc.
  • Multiple radicals — $\sqrt{x} + \sqrt{y} = a$

📚 Template Solutions

Basic Radical Equation

StepActionExample
1Isolate radical$\sqrt{x+1} = x-1$
2Square both sides$x+1 = (x-1)^2$
3Expand and solve$x+1 = x^2-2x+1$ → $x^2-3x = 0$ → $x = 0, 3$
4Check solutions$x = 0$: $\sqrt{1} = -1$ ✗; $x = 3$: $\sqrt{4} = 2$ ✓

Multiple Radicals

StepActionExample
1Isolate one radical$\sqrt{x+1} = 2 - \sqrt{x-1}$
2Square both sides$x+1 = 4 - 4\sqrt{x-1} + (x-1)$
3Isolate remaining radical$4\sqrt{x-1} = 2$
4Square again$16(x-1) = 4$ → $x-1 = \frac{1}{4}$ → $x = \frac{5}{4}$
5VerifyCheck in original equation

🎯 Worked Examples

Example 1: Basic Radical Equation

Problem: Solve $\sqrt{x+1} = x-1$

Solution:

  1. Isolate: Already isolated
  2. Square: $x+1 = (x-1)^2 = x^2-2x+1$
  3. Rearrange: $x^2-3x = 0$
  4. Factor: $x(x-3) = 0$
  5. Solve: $x = 0$ or $x = 3$
  6. Check $x = 0$: $\sqrt{0+1} = \sqrt{1} = 1$ and $0-1 = -1$ ✗
  7. Check $x = 3$: $\sqrt{3+1} = \sqrt{4} = 2$ and $3-1 = 2$ ✓
  8. Answer: $x = 3$

Example 2: Multiple Radicals

Problem: Solve $\sqrt{x+1} + \sqrt{x-1} = 2$

Solution:

  1. Domain: $x+1 \geq 0$ and $x-1 \geq 0$, so $x \geq 1$
  2. Isolate one radical: $\sqrt{x+1} = 2 - \sqrt{x-1}$
  3. Square both sides: $x+1 = 4 - 4\sqrt{x-1} + (x-1)$
  4. Simplify: $x+1 = 4 - 4\sqrt{x-1} + x - 1 = 3 - 4\sqrt{x-1} + x$
  5. Subtract $x$: $1 = 3 - 4\sqrt{x-1}$
  6. Isolate radical: $4\sqrt{x-1} = 2$
  7. Divide by 4: $\sqrt{x-1} = \frac{1}{2}$
  8. Square: $x-1 = \frac{1}{4}$
  9. Solve: $x = \frac{5}{4}$
  10. Check domain: $\frac{5}{4} \geq 1$ ✓
  11. Verify: $\sqrt{\frac{5}{4}+1} + \sqrt{\frac{5}{4}-1} = \sqrt{\frac{9}{4}} + \sqrt{\frac{1}{4}} = \frac{3}{2} + \frac{1}{2} = 2$ ✓
  12. Answer: $x = \frac{5}{4}$

Example 3: Conjugate Technique

Problem: Solve $\sqrt{x+1} - \sqrt{x-1} = 1$

Solution:

  1. Domain: $x+1 \geq 0$ and $x-1 \geq 0$, so $x \geq 1$
  2. Multiply by conjugate: $(\sqrt{x+1} - \sqrt{x-1})(\sqrt{x+1} + \sqrt{x-1}) = 1 \cdot (\sqrt{x+1} + \sqrt{x-1})$
  3. Simplify left side: $(x+1) - (x-1) = 2$
  4. So: $2 = \sqrt{x+1} + \sqrt{x-1}$
  5. Now we have: $\sqrt{x+1} - \sqrt{x-1} = 1$ and $\sqrt{x+1} + \sqrt{x-1} = 2$
  6. Add equations: $2\sqrt{x+1} = 3$ → $\sqrt{x+1} = \frac{3}{2}$
  7. Square: $x+1 = \frac{9}{4}$ → $x = \frac{5}{4}$
  8. Check domain: $\frac{5}{4} \geq 1$ ✓
  9. Verify: $\sqrt{\frac{5}{4}+1} - \sqrt{\frac{5}{4}-1} = \sqrt{\frac{9}{4}} - \sqrt{\frac{1}{4}} = \frac{3}{2} - \frac{1}{2} = 1$ ✓
  10. Answer: $x = \frac{5}{4}$

⚠️ Common Pitfalls

Pitfall: Forgetting to check solutions

  • Fix: Always substitute solutions back into original equation
  • Example: $\sqrt{x+1} = x-1$ gives $x = 0, 3$, but only $x = 3$ works

Pitfall: Domain restrictions

  • Fix: Check that radicands are non-negative
  • Example: $\sqrt{x-1}$ requires $x \geq 1$

Pitfall: Incorrect squaring

  • Fix: Square the entire expression, not just the radical
  • Example: $(\sqrt{x+1} + \sqrt{x-1})^2 = (x+1) + 2\sqrt{(x+1)(x-1)} + (x-1)$, not $x+1 + x-1$

🎯 AMC-Style Worked Example

Problem: Find all real solutions to $\sqrt{x^2 + 1} = x + 1$.

Solution:

  1. Domain: $x^2 + 1 \geq 0$ (always true for real $x$)
  2. Square both sides: $x^2 + 1 = (x+1)^2 = x^2 + 2x + 1$
  3. Simplify: $x^2 + 1 = x^2 + 2x + 1$
  4. Subtract $x^2 + 1$: $0 = 2x$
  5. Solve: $x = 0$
  6. Check: $\sqrt{0^2 + 1} = \sqrt{1} = 1$ and $0 + 1 = 1$ ✓
  7. Answer: $x = 0$

Key insight: Sometimes squaring eliminates the radical completely.

  • Domain Restrictions — Radical expressions have domain restrictions
  • Extraneous Solutions — Squaring can introduce extra solutions
  • Conjugates — Useful for certain radical expressions
  • Verification — Always check solutions in original equation

📝 Practice Checklist

  • Master basic radical equation solving
  • Practice multiple radical techniques
  • Learn conjugate method
  • Practice domain restrictions
  • Understand verification process
  • Work on speed and accuracy

Next: Absolute Value Casework | Prev: Discriminant & Parameter Sweeps | Back: Problem Types Overview