🔢 Radical Equations — Isolate, Square, Verify
Essential technique for solving equations with square roots and other radicals.
🎯 Recognition Cues
- “Solve for $x$” — Equations with square roots
- “Find all real solutions” — Radical equations often have domain restrictions
- Square root expressions — $\sqrt{x}$, $\sqrt{x+1}$, etc.
- Multiple radicals — $\sqrt{x} + \sqrt{y} = a$
📚 Template Solutions
Basic Radical Equation
| Step | Action | Example |
|---|---|---|
| 1 | Isolate radical | $\sqrt{x+1} = x-1$ |
| 2 | Square both sides | $x+1 = (x-1)^2$ |
| 3 | Expand and solve | $x+1 = x^2-2x+1$ → $x^2-3x = 0$ → $x = 0, 3$ |
| 4 | Check solutions | $x = 0$: $\sqrt{1} = -1$ ✗; $x = 3$: $\sqrt{4} = 2$ ✓ |
Multiple Radicals
| Step | Action | Example |
|---|---|---|
| 1 | Isolate one radical | $\sqrt{x+1} = 2 - \sqrt{x-1}$ |
| 2 | Square both sides | $x+1 = 4 - 4\sqrt{x-1} + (x-1)$ |
| 3 | Isolate remaining radical | $4\sqrt{x-1} = 2$ |
| 4 | Square again | $16(x-1) = 4$ → $x-1 = \frac{1}{4}$ → $x = \frac{5}{4}$ |
| 5 | Verify | Check in original equation |
🎯 Worked Examples
Example 1: Basic Radical Equation
Problem: Solve $\sqrt{x+1} = x-1$
Solution:
- Isolate: Already isolated
- Square: $x+1 = (x-1)^2 = x^2-2x+1$
- Rearrange: $x^2-3x = 0$
- Factor: $x(x-3) = 0$
- Solve: $x = 0$ or $x = 3$
- Check $x = 0$: $\sqrt{0+1} = \sqrt{1} = 1$ and $0-1 = -1$ ✗
- Check $x = 3$: $\sqrt{3+1} = \sqrt{4} = 2$ and $3-1 = 2$ ✓
- Answer: $x = 3$
Example 2: Multiple Radicals
Problem: Solve $\sqrt{x+1} + \sqrt{x-1} = 2$
Solution:
- Domain: $x+1 \geq 0$ and $x-1 \geq 0$, so $x \geq 1$
- Isolate one radical: $\sqrt{x+1} = 2 - \sqrt{x-1}$
- Square both sides: $x+1 = 4 - 4\sqrt{x-1} + (x-1)$
- Simplify: $x+1 = 4 - 4\sqrt{x-1} + x - 1 = 3 - 4\sqrt{x-1} + x$
- Subtract $x$: $1 = 3 - 4\sqrt{x-1}$
- Isolate radical: $4\sqrt{x-1} = 2$
- Divide by 4: $\sqrt{x-1} = \frac{1}{2}$
- Square: $x-1 = \frac{1}{4}$
- Solve: $x = \frac{5}{4}$
- Check domain: $\frac{5}{4} \geq 1$ ✓
- Verify: $\sqrt{\frac{5}{4}+1} + \sqrt{\frac{5}{4}-1} = \sqrt{\frac{9}{4}} + \sqrt{\frac{1}{4}} = \frac{3}{2} + \frac{1}{2} = 2$ ✓
- Answer: $x = \frac{5}{4}$
Example 3: Conjugate Technique
Problem: Solve $\sqrt{x+1} - \sqrt{x-1} = 1$
Solution:
- Domain: $x+1 \geq 0$ and $x-1 \geq 0$, so $x \geq 1$
- Multiply by conjugate: $(\sqrt{x+1} - \sqrt{x-1})(\sqrt{x+1} + \sqrt{x-1}) = 1 \cdot (\sqrt{x+1} + \sqrt{x-1})$
- Simplify left side: $(x+1) - (x-1) = 2$
- So: $2 = \sqrt{x+1} + \sqrt{x-1}$
- Now we have: $\sqrt{x+1} - \sqrt{x-1} = 1$ and $\sqrt{x+1} + \sqrt{x-1} = 2$
- Add equations: $2\sqrt{x+1} = 3$ → $\sqrt{x+1} = \frac{3}{2}$
- Square: $x+1 = \frac{9}{4}$ → $x = \frac{5}{4}$
- Check domain: $\frac{5}{4} \geq 1$ ✓
- Verify: $\sqrt{\frac{5}{4}+1} - \sqrt{\frac{5}{4}-1} = \sqrt{\frac{9}{4}} - \sqrt{\frac{1}{4}} = \frac{3}{2} - \frac{1}{2} = 1$ ✓
- Answer: $x = \frac{5}{4}$
⚠️ Common Pitfalls
Pitfall: Forgetting to check solutions
- Fix: Always substitute solutions back into original equation
- Example: $\sqrt{x+1} = x-1$ gives $x = 0, 3$, but only $x = 3$ works
Pitfall: Domain restrictions
- Fix: Check that radicands are non-negative
- Example: $\sqrt{x-1}$ requires $x \geq 1$
Pitfall: Incorrect squaring
- Fix: Square the entire expression, not just the radical
- Example: $(\sqrt{x+1} + \sqrt{x-1})^2 = (x+1) + 2\sqrt{(x+1)(x-1)} + (x-1)$, not $x+1 + x-1$
🎯 AMC-Style Worked Example
Problem: Find all real solutions to $\sqrt{x^2 + 1} = x + 1$.
Solution:
- Domain: $x^2 + 1 \geq 0$ (always true for real $x$)
- Square both sides: $x^2 + 1 = (x+1)^2 = x^2 + 2x + 1$
- Simplify: $x^2 + 1 = x^2 + 2x + 1$
- Subtract $x^2 + 1$: $0 = 2x$
- Solve: $x = 0$
- Check: $\sqrt{0^2 + 1} = \sqrt{1} = 1$ and $0 + 1 = 1$ ✓
- Answer: $x = 0$
Key insight: Sometimes squaring eliminates the radical completely.
🔗 Related Patterns
- Domain Restrictions — Radical expressions have domain restrictions
- Extraneous Solutions — Squaring can introduce extra solutions
- Conjugates — Useful for certain radical expressions
- Verification — Always check solutions in original equation
📝 Practice Checklist
- Master basic radical equation solving
- Practice multiple radical techniques
- Learn conjugate method
- Practice domain restrictions
- Understand verification process
- Work on speed and accuracy
Next: Absolute Value Casework | Prev: Discriminant & Parameter Sweeps | Back: Problem Types Overview