🎯 Symmetry Substitutions — u=x+1/x, t=x², Cyclic Sums
Essential technique for solving complex algebraic problems with symmetry.
🎯 Recognition Cues
- “Simplify” — Expressions with $x$ and $\frac{1}{x}$
- “Find the value of” — Complex expressions that can be simplified
- $x + \frac{1}{x}$ — Symmetric expressions
- $x^2 + \frac{1}{x^2}$ — Powers of symmetric expressions
- Cyclic expressions — $x + y + z$ where $x, y, z$ are related
📚 Template Solutions
Common Substitutions
| Pattern | Substitution | Purpose | Example |
|---|---|---|---|
| $x + \frac{1}{x}$ | $u = x + \frac{1}{x}$ | Simplify expressions | $x^2 + \frac{1}{x^2} = u^2 - 2$ |
| $x^2$ | $t = x^2$ | Reduce degree | $x^4 + x^2 + 1 = t^2 + t + 1$ |
| $x + y + z$ | $s = x + y + z$ | Cyclic sums | $x^2 + y^2 + z^2 = s^2 - 2(xy + yz + zx)$ |
| $\sqrt{x}$ | $u = \sqrt{x}$ | Eliminate radicals | $x + \sqrt{x} = u^2 + u$ |
Symmetry Identities
| Expression | Identity | Example |
|---|---|---|
| $x^2 + \frac{1}{x^2}$ | $(x + \frac{1}{x})^2 - 2$ | $x^2 + \frac{1}{x^2} = u^2 - 2$ where $u = x + \frac{1}{x}$ |
| $x^3 + \frac{1}{x^3}$ | $(x + \frac{1}{x})^3 - 3(x + \frac{1}{x})$ | $x^3 + \frac{1}{x^3} = u^3 - 3u$ where $u = x + \frac{1}{x}$ |
| $x^4 + \frac{1}{x^4}$ | $(x^2 + \frac{1}{x^2})^2 - 2$ | $x^4 + \frac{1}{x^4} = (u^2 - 2)^2 - 2$ where $u = x + \frac{1}{x}$ |
🎯 Worked Examples
Example 1: Basic Symmetry
Problem: If $x + \frac{1}{x} = 3$, find $x^2 + \frac{1}{x^2}$.
Solution:
- Let $u = x + \frac{1}{x}$: $u = 3$
- Use identity: $x^2 + \frac{1}{x^2} = u^2 - 2$
- Substitute: $x^2 + \frac{1}{x^2} = 3^2 - 2 = 9 - 2 = 7$
- Answer: $7$
Example 2: Higher Powers
Problem: If $x + \frac{1}{x} = 2$, find $x^3 + \frac{1}{x^3}$.
Solution:
- Let $u = x + \frac{1}{x}$: $u = 2$
- Use identity: $x^3 + \frac{1}{x^3} = u^3 - 3u$
- Substitute: $x^3 + \frac{1}{x^3} = 2^3 - 3(2) = 8 - 6 = 2$
- Answer: $2$
Example 3: Cyclic Sums
Problem: If $x + y + z = 6$ and $xy + yz + zx = 11$, find $x^2 + y^2 + z^2$.
Solution:
- Let $s = x + y + z$: $s = 6$
- Use identity: $x^2 + y^2 + z^2 = s^2 - 2(xy + yz + zx)$
- Substitute: $x^2 + y^2 + z^2 = 6^2 - 2(11) = 36 - 22 = 14$
- Answer: $14$
⚠️ Common Pitfalls
Pitfall: Incorrect identity application
- Fix: Remember $x^2 + \frac{1}{x^2} = (x + \frac{1}{x})^2 - 2$, not $(x + \frac{1}{x})^2 + 2$
- Example: If $x + \frac{1}{x} = 3$, then $x^2 + \frac{1}{x^2} = 3^2 - 2 = 7$, not $3^2 + 2 = 11$
Pitfall: Forgetting to check domain
- Fix: Ensure substitutions are valid
- Example: $u = x + \frac{1}{x}$ requires $x \neq 0$
Pitfall: Incorrect cyclic substitution
- Fix: Use correct identity for cyclic sums
- Example: $x^2 + y^2 + z^2 = (x+y+z)^2 - 2(xy+yz+zx)$, not $(x+y+z)^2$
🎯 AMC-Style Worked Example
Problem: If $x + \frac{1}{x} = 4$, find $x^4 + \frac{1}{x^4}$.
Solution:
- Let $u = x + \frac{1}{x}$: $u = 4$
- Find $x^2 + \frac{1}{x^2}$: $x^2 + \frac{1}{x^2} = u^2 - 2 = 4^2 - 2 = 16 - 2 = 14$
- Use identity: $x^4 + \frac{1}{x^4} = (x^2 + \frac{1}{x^2})^2 - 2$
- Substitute: $x^4 + \frac{1}{x^4} = 14^2 - 2 = 196 - 2 = 194$
- Answer: $194$
Key insight: Higher powers can be found by building up from lower powers.
🔗 Related Patterns
- Symmetric Expressions — Look for patterns involving $x$ and $\frac{1}{x}$
- Cyclic Sums — Expressions with $x + y + z$ and related terms
- Identities — Memorize common symmetry identities
- Substitution — Replace complex expressions with simpler variables
📝 Practice Checklist
- Master basic symmetry substitutions
- Practice higher power identities
- Learn cyclic sum techniques
- Practice domain restrictions
- Understand identity applications
- Work on speed and accuracy
Next: Sequence Closed Forms | Prev: Systems Linear & Nonlinear | Back: Problem Types Overview