Floor‑Sum Grouping by Perfect Squares


Quick Solution Using “Perfect‑Square Buckets”

The floor of $\sqrt{k}$ stays constant on each interval

mmRange of kkCount of $k$’sContribution to the sum
1$1\le k\le 3$3$1\times 3 = 3$
2$4\le k\le 8$5$2\times 5 = 10$
3$9\le k\le 15$7$3\times 7 = 21$
4$16\le k\le 24$9$4\times 9 = 36$
5$25\le k\le 35$11$5\times 11 = 55$
6$36\le k\le 48$13$6\times 13 = 78$
7$49\le k\le 63$15$7\times 15 = 105$
8$64\le k\le 80$17$8\times 17 = 136$
9$81\le k\le 99$19$9\times 19 = 171$
10$100$ only1$10\times 1 = 10$

Add the contributions:

$$ 3+10+21+36+55+78+105+136+171+10 ;=; \boxed{625}. $$