Linear Recursion → Explicit Formula Technique
Quick “shift‑to‑homogeneous” solution
Move to a fixed point.
Write the recursion as
$$ a_{n+1}-\alpha = 2\bigl(a_{n}-\alpha\bigr), $$
where the constant α\alpha satisfies $\alpha = 2\alpha + 7\Rightarrow\alpha=-7$.
Define the homogeneous part.
Let $b_{n}=a_{n}+7$.
Then b1=a1+7=10b_{1}=a_{1}+7=10 and
$$ b_{n+1}=2b_{n}\quad\Longrightarrow\quad b_{n}=10\cdot 2^{,n-1}. $$
Return to $a_{n}$.
$$ a_{n}=b_{n}-7 = 10\cdot 2^{,n-1}-7. $$
Apply the inequality $a_{n}>1000$.
$$ 10\cdot2^{,n-1}-7>1000 ;\Longrightarrow; 2^{,n-1}>\frac{1007}{10}=100.7 $$
Small powers of 2: $2^{6}=64,;2^{7}=128$.
Thus $2^{,n-1}$ first exceeds $100.7$ at $n-1=7\Rightarrow n=\boxed{8}$