Linear Recursion → Explicit Formula Technique


Quick “shift‑to‑homogeneous” solution

  1. Move to a fixed point.

    Write the recursion as

    $$ a_{n+1}-\alpha = 2\bigl(a_{n}-\alpha\bigr), $$

    where the constant α\alpha satisfies $\alpha = 2\alpha + 7\Rightarrow\alpha=-7$.

  2. Define the homogeneous part.

    Let $b_{n}=a_{n}+7$.

    Then b1=a1+7=10b_{1}=a_{1}+7=10 and

    $$ b_{n+1}=2b_{n}\quad\Longrightarrow\quad b_{n}=10\cdot 2^{,n-1}. $$

  3. Return to $a_{n}$.

    $$ a_{n}=b_{n}-7 = 10\cdot 2^{,n-1}-7. $$

  4. Apply the inequality $a_{n}>1000$.

    $$ 10\cdot2^{,n-1}-7>1000 ;\Longrightarrow; 2^{,n-1}>\frac{1007}{10}=100.7 $$

    Small powers of 2: $2^{6}=64,;2^{7}=128$.

    Thus $2^{,n-1}$ first exceeds $100.7$ at $n-1=7\Rightarrow n=\boxed{8}$