Radical‑Exponent Manipulation / “Sum‑of‑Cubes” Trick
Rapid Solution (under 30 s)
Set $a=\sqrt[3]{2}$ and $b=\sqrt[3]{4}= \sqrt[3]{2^{2}}$.
Then $x=a+b$.
Use the cube expansion
$$ \begin{aligned} x^{3} &= a^{3}+b^{3}+3ab(a+b) \ &= 2 + 4 + 3\bigl(a,b\bigr),x. \end{aligned} $$
But $ab=\sqrt[3]{2},\sqrt[3]{4}=\sqrt[3]{8}=2$.
So
$$ x^{3}=6 + 3(2)x = 6 + 6x. $$
Re‑arrange:
$$ x^{3}-6x = \boxed{6} $$