Symmetric‑Sum Identity for Cubics
Problem.
Real numbers $x, y, z$ satisfy
$$ x+y+z = 6, \qquad xy+yz+zx = 11, \qquad xyz = 6. $$
Without solving for $x, y, z$ individually, find the value of
$$ x^{3}+y^{3}+z^{3}. $$
One‑Minute Solution (use the cubic symmetric identity)
A standard identity for any three variables is
Plug in the given symmetric sums:
$$ \begin{aligned} x^{3}+y^{3}+z^{3} &= 6^{3}
- 3(6)(11)
- 3(6) \[4pt] &= 216
- 198
- 18 \[4pt] &= 36. \end{aligned} $$
$$ \boxed{36} $$