Telescoping Partial‑Fraction Technique
Fast Telescoping Solution
Partial‑fraction split
$$ \frac{3}{(2k-1)(2k+1)} ;=; \frac{A}{2k-1} ;+; \frac{B}{2k+1}. $$
Solve $3 = A(2k+1)+B(2k-1)$.
Hence
$$ \frac{3}{(2k-1)(2k+1)}
\frac{\tfrac32}{2k-1};-;\frac{\tfrac32}{2k+1}
\frac{3}{2}!\left(\frac1{2k-1}-\frac1{2k+1}\right). $$
Write the sum
$$ S
\frac32 \bigl[(1!-!\tfrac13) + (\tfrac13!-!\tfrac15) + (\tfrac15!-!\tfrac17) + \cdots + (\tfrac1{99}!-!\tfrac1{101}) \bigr]. $$
Everything cancels except the very first and very last terms.
Collapse the telescope
$$ S
\frac32!\left(1-\frac1{101}\right)
\frac32\cdot\frac{100}{101}
\frac{150}{101}. $$