Telescoping Partial‑Fraction Technique


Fast Telescoping Solution

  1. Partial‑fraction split

    $$ \frac{3}{(2k-1)(2k+1)} ;=; \frac{A}{2k-1} ;+; \frac{B}{2k+1}. $$

    Solve $3 = A(2k+1)+B(2k-1)$.

    Hence

    $$ \frac{3}{(2k-1)(2k+1)}

    \frac{\tfrac32}{2k-1};-;\frac{\tfrac32}{2k+1}

    \frac{3}{2}!\left(\frac1{2k-1}-\frac1{2k+1}\right). $$

  2. Write the sum

    $$ S

    \frac32 \bigl[(1!-!\tfrac13) + (\tfrac13!-!\tfrac15) + (\tfrac15!-!\tfrac17) + \cdots + (\tfrac1{99}!-!\tfrac1{101}) \bigr]. $$

    Everything cancels except the very first and very last terms.

  3. Collapse the telescope

    $$ S

    \frac32!\left(1-\frac1{101}\right)

    \frac32\cdot\frac{100}{101}

    \frac{150}{101}. $$