📝 Notation Cheatsheet — Algebra Symbols & Conventions

Essential notation reference for AMC algebra problems.

🔢 Number Systems

SymbolMeaningExampleUsage
$\mathbb{R}$Real numbers$x \in \mathbb{R}$All real values
$\mathbb{Z}$Integers$n \in \mathbb{Z}$Whole numbers
$\mathbb{N}$Natural numbers$k \in \mathbb{N}$Positive integers
$\mathbb{Q}$Rational numbers$\frac{p}{q} \in \mathbb{Q}$Fractions
$\mathbb{C}$Complex numbers$z \in \mathbb{C}$$a + bi$ form

📏 Intervals & Sets

NotationMeaningExampleUsage
$(a,b)$Open interval$x \in (2,5)$$2 < x < 5$
$[a,b]$Closed interval$x \in [1,4]$$1 \leq x \leq 4$
$(a,b]$Half-open$x \in (0,3]$$0 < x \leq 3$
$[a,b)$Half-open$x \in [2,7)$$2 \leq x < 7$
$(-\infty, a)$Unbounded$x < a$All $x$ less than $a$
$(a, \infty)$Unbounded$x > a$All $x$ greater than $a$
${x : P(x)}$Set builder${x : x^2 < 4}$All $x$ satisfying $P(x)$

🔧 Function Notation

SymbolMeaningExampleUsage
$f(x)$Function value$f(3) = 7$Evaluate at $x = 3$
$f^{-1}(x)$Inverse function$f^{-1}(7) = 3$Undo the function
$f \circ g$Composition$(f \circ g)(x) = f(g(x))$Apply $g$ then $f$
$\text{dom}(f)$Domain$\text{dom}(f) = \mathbb{R}$All valid inputs
$\text{ran}(f)$Range$\text{ran}(f) = [0,\infty)$All possible outputs

⚡ Essential Identities

Basic Factoring

PatternFormulaExample
Difference of squares$a^2 - b^2 = (a-b)(a+b)$$x^2 - 9 = (x-3)(x+3)$
Perfect square$(a \pm b)^2 = a^2 \pm 2ab + b^2$$(x+2)^2 = x^2 + 4x + 4$
Sum of cubes$a^3 + b^3 = (a+b)(a^2-ab+b^2)$$x^3 + 8 = (x+2)(x^2-2x+4)$
Difference of cubes$a^3 - b^3 = (a-b)(a^2+ab+b^2)$$x^3 - 27 = (x-3)(x^2+3x+9)$
Sophie Germain$a^4 + 4b^4 = (a^2+2ab+2b^2)(a^2-2ab+2b^2)$$x^4 + 4 = (x^2+2x+2)(x^2-2x+2)$

Vieta’s Formulas

DegreeSum of RootsProduct of Roots
Quadratic $ax^2+bx+c$$r_1 + r_2 = -\frac{b}{a}$$r_1 \cdot r_2 = \frac{c}{a}$
Cubic $ax^3+bx^2+cx+d$$r_1 + r_2 + r_3 = -\frac{b}{a}$$r_1 \cdot r_2 \cdot r_3 = -\frac{d}{a}$

🎯 Quadratic Essentials

ConceptFormulaUsage
Quadratic formula$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$Solve $ax^2+bx+c=0$
Discriminant$\Delta = b^2 - 4ac$Nature of roots
Vertex form$y = a(x-h)^2 + k$Vertex at $(h,k)$
Vertex coordinates$h = -\frac{b}{2a}$, $k = \frac{4ac-b^2}{4a}$From standard form

📊 Series & Sequences

TypeFormulaExample
Arithmetic term$a_n = a_1 + (n-1)d$$a_5 = 3 + 4 \cdot 2 = 11$
Arithmetic sum$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$S_{10} = 5(6 + 9 \cdot 2) = 120$
Geometric term$a_n = a_1 \cdot r^{n-1}$$a_4 = 2 \cdot 3^3 = 54$
Geometric sum (finite)$S_n = a_1 \frac{1-r^n}{1-r}$$S_5 = 2 \cdot \frac{1-3^5}{1-3} = 242$
Geometric sum (infinite)$S_\infty = \frac{a_1}{1-r}$$S_\infty = \frac{3}{1-\frac{1}{2}} = 6$

🔢 Exponents & Logarithms

RuleFormulaExample
Product$a^x \cdot a^y = a^{x+y}$$2^3 \cdot 2^4 = 2^7$
Power$(a^x)^y = a^{xy}$$(3^2)^3 = 3^6$
Quotient$\frac{a^x}{a^y} = a^{x-y}$$\frac{5^7}{5^3} = 5^4$
Log product$\log_a(xy) = \log_a x + \log_a y$$\log_2(8 \cdot 4) = \log_2 8 + \log_2 4$
Log power$\log_a(x^y) = y \log_a x$$\log_3(9^2) = 2 \log_3 9$
Change of base$\log_a x = \frac{\log_b x}{\log_b a}$$\log_2 8 = \frac{\log_{10} 8}{\log_{10} 2}$

🧮 Complex Numbers

ConceptFormulaExample
Imaginary unit$i^2 = -1$$i^3 = -i$
Complex conjugate$\overline{a+bi} = a-bi$$\overline{3+4i} = 3-4i$
Modulus$a+bi
Product with conjugate$(a+bi)(a-bi) = a^2+b^2$$(3+4i)(3-4i) = 25$

⚖️ Inequalities

SymbolMeaningExample
$<$Less than$x < 5$
$\leq$Less than or equal$x \leq 3$
$>$Greater than$x > -2$
$\geq$Greater than or equal$x \geq 0$
$\neq$Not equal$x \neq 1$
$\approx$Approximately equal$\pi \approx 3.14$

🎯 Common Pitfalls

  • Domain restrictions: Check denominators $\neq 0$, radicands $\geq 0$
  • Sign errors: Watch negative signs in expansions
  • Extraneous solutions: Always verify after squaring or cross-multiplying
  • Interval notation: Remember $(a,b)$ vs $[a,b]$ distinction
  • Function composition: $(f \circ g)(x) = f(g(x))$, not $f(x) \cdot g(x)$

Next: Concept Atlas | Prev: Scope Map | Back: Reference Overview