🎯 Absolute Value — Piecewise Setup & Distance View
Essential technique for handling absolute value expressions in AMC problems.
🎯 Key Ideas
Absolute Value Definition — $|x| = \begin{cases} x & \text{if } x \geq 0 \ -x & \text{if } x < 0 \end{cases}$
Distance Interpretation — $|x - a|$ represents the distance between $x$ and $a$ on the number line.
Piecewise Approach — Break absolute value expressions into cases based on the sign of the argument.
📊 Essential Techniques
Basic Properties
| Property | Statement | Example |
|---|---|---|
| Non-negativity | $ | x |
| Definition | $ | x |
| Distance | $ | x - a |
Solving Strategies
| Type | Method | Example |
|---|---|---|
| $ | x | = a$ |
| $ | x | < a$ |
| $ | x | > a$ |
🎯 Micro-Examples
Example 1: Solve $|x - 3| = 7$
- Method 1: $x - 3 = 7$ or $x - 3 = -7$
- Solve: $x = 10$ or $x = -4$
- Answer: $x = 10$ or $x = -4$
Example 2: Solve $|2x + 1| < 5$
- Rewrite: $-5 < 2x + 1 < 5$
- Subtract 1: $-6 < 2x < 4$
- Divide by 2: $-3 < x < 2$
- Answer: $x \in (-3, 2)$
Example 3: Solve $|x - 2| + |x + 1| = 5$
- Breakpoints: $x = 2$ and $x = -1$
- Case 1 ($x < -1$): $-(x-2) - (x+1) = 5$ → $-2x + 1 = 5$ → $x = -2$
- Case 2 ($-1 \leq x < 2$): $-(x-2) + (x+1) = 5$ → $3 = 5$ (no solution)
- Case 3 ($x \geq 2$): $(x-2) + (x+1) = 5$ → $2x - 1 = 5$ → $x = 3$
- Answer: $x = -2$ or $x = 3$
⚠️ Common Traps & Fixes
Trap: Forgetting to check both cases
- Fix: Always consider both positive and negative cases
- Example: $|x| = 3$ has solutions $x = 3$ and $x = -3$
Trap: Incorrect inequality direction
- Fix: $|x| < a$ means $-a < x < a$ (and), $|x| > a$ means $x < -a$ or $x > a$ (or)
- Example: $|x| < 2$ is $-2 < x < 2$, not $x < 2$ or $x > -2$
Trap: Missing breakpoints in complex expressions
- Fix: Find all values where any absolute value argument equals zero
- Example: $|x-1| + |x+2|$ has breakpoints at $x = 1$ and $x = -2$
🎯 AMC-Style Worked Example
Problem: Find all real values of $x$ such that $|x^2 - 4| = 3$.
Solution:
- Set up cases: $x^2 - 4 = 3$ or $x^2 - 4 = -3$
- Case 1: $x^2 - 4 = 3$ → $x^2 = 7$ → $x = \pm\sqrt{7}$
- Case 2: $x^2 - 4 = -3$ → $x^2 = 1$ → $x = \pm 1$
- Verify:
- $|(\sqrt{7})^2 - 4| = |7 - 4| = 3$ ✓
- $|(-\sqrt{7})^2 - 4| = |7 - 4| = 3$ ✓
- $|1^2 - 4| = |1 - 4| = 3$ ✓
- $|(-1)^2 - 4| = |1 - 4| = 3$ ✓
- Answer: $x = \pm\sqrt{7}$ or $x = \pm 1$
Key insight: Absolute value equations often lead to multiple cases that must all be checked.
🔗 Related Topics
- Linear Inequalities — Absolute value inequalities are special cases
- Quadratic Equations — Absolute value can involve quadratics
- Piecewise Functions — Absolute value is a piecewise function
- Distance — Absolute value represents distance on number line
📝 Practice Checklist
- Master basic absolute value equations
- Practice absolute value inequalities
- Learn piecewise approach
- Practice with multiple absolute values
- Understand distance interpretation
- Work on speed and accuracy
Next: Quadratics & Parabolas | Prev: Linear Equations & Inequalities | Back: Topics Overview