⚖️ Inequalities & Optimization — Sign Charts & AM-GM

Essential for optimization problems and advanced inequality solving in AMC contests.

🎯 Key Ideas

Sign Charts — Visual method for solving polynomial inequalities by analyzing sign changes at roots.

AM-GM Inequality — For positive real numbers, $\frac{a+b}{2} \geq \sqrt{ab}$ with equality when $a = b$.

Optimization — Finding maximum or minimum values using algebraic techniques and inequalities.

📊 Essential Concepts

Sign Charts

StepActionExample
1Find roots$x^2 - 4 = 0$ → $x = \pm 2$
2Create number line$-\infty$ ——— $-2$ ——— $2$ ——— $\infty$
3Test intervals$x < -2$: $(-)^2 - 4 > 0$; $-2 < x < 2$: $(-)^2 - 4 < 0$; $x > 2$: $(+)^2 - 4 > 0$
4Write solution$x^2 - 4 > 0$ when $x < -2$ or $x > 2$

AM-GM Inequality

FormStatementExample
Basic$\frac{a+b}{2} \geq \sqrt{ab}$ for $a,b > 0$$\frac{4+9}{2} = 6.5 \geq \sqrt{36} = 6$
General$\frac{a_1 + a_2 + \cdots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \cdots a_n}$$\frac{2+3+6}{3} = \frac{11}{3} \geq \sqrt[3]{36} \approx 3.3$
EqualityHolds when all numbers are equal$a = b = c$ in 3-variable case

🎯 Micro-Examples

Example 1: Solve $x^2 - 4 > 0$

  • Find roots: $x^2 - 4 = 0$ → $x = \pm 2$
  • Create sign chart: $-\infty$ ——— $-2$ ——— $2$ ——— $\infty$
  • Test intervals:
    • $x < -2$: $(-3)^2 - 4 = 9 - 4 = 5 > 0$ ✓
    • $-2 < x < 2$: $0^2 - 4 = -4 < 0$ ✗
    • $x > 2$: $3^2 - 4 = 9 - 4 = 5 > 0$ ✓
  • Answer: $x < -2$ or $x > 2$

Example 2: Find minimum value of $x + \frac{1}{x}$ for $x > 0$

  • Apply AM-GM: $\frac{x + \frac{1}{x}}{2} \geq \sqrt{x \cdot \frac{1}{x}} = 1$
  • Solve: $x + \frac{1}{x} \geq 2$
  • Equality when: $x = \frac{1}{x}$ → $x^2 = 1$ → $x = 1$ (since $x > 0$)
  • Answer: Minimum value is $2$ when $x = 1$

Example 3: Solve $(x-1)(x+2)(x-3) \leq 0$

  • Find roots: $x = 1, -2, 3$
  • Create sign chart: $-\infty$ ——— $-2$ ——— $1$ ——— $3$ ——— $\infty$
  • Test intervals:
    • $x < -2$: $(-)(-)(-) = -$ ✗
    • $-2 < x < 1$: $(-)(+)(-) = +$ ✓
    • $1 < x < 3$: $(+)(+)(-) = -$ ✗
    • $x > 3$: $(+)(+)(+) = +$ ✓
  • Answer: $-2 \leq x \leq 1$ or $x \geq 3$

⚠️ Common Traps & Fixes

Trap: Forgetting to check equality at roots

  • Fix: Include roots in solution if inequality allows equality
  • Example: $x^2 - 4 \geq 0$ includes $x = \pm 2$

Trap: Incorrect sign analysis

  • Fix: Test one value in each interval, not just the sign of leading coefficient
  • Example: For $(x-1)(x+2)$, test $x = 0$: $(0-1)(0+2) = (-1)(2) = -2 < 0$

Trap: AM-GM without positive constraint

  • Fix: AM-GM only applies to positive numbers
  • Example: Can’t use AM-GM on $x + \frac{1}{x}$ if $x < 0$

🎯 AMC-Style Worked Example

Problem: Find the minimum value of $x^2 + \frac{1}{x^2}$ for $x > 0$.

Solution:

  1. Apply AM-GM: $\frac{x^2 + \frac{1}{x^2}}{2} \geq \sqrt{x^2 \cdot \frac{1}{x^2}} = 1$
  2. Solve: $x^2 + \frac{1}{x^2} \geq 2$
  3. Equality when: $x^2 = \frac{1}{x^2}$ → $x^4 = 1$ → $x = 1$ (since $x > 0$)
  4. Verify: When $x = 1$: $1^2 + \frac{1}{1^2} = 1 + 1 = 2$
  5. Answer: Minimum value is $2$ when $x = 1$

Key insight: AM-GM is powerful for finding lower bounds on positive expressions.

  • Quadratic Inequalities — Sign charts work for any polynomial
  • Optimization — AM-GM is essential for many optimization problems
  • Domain — Inequalities often involve domain restrictions
  • Word Problems — Optimization problems often use inequalities

📝 Practice Checklist

  • Master sign chart technique
  • Practice AM-GM inequality
  • Learn optimization strategies
  • Practice polynomial inequalities
  • Understand equality conditions
  • Work on speed and accuracy

Next: Sequences & Recursions | Prev: Systems of Equations | Back: Topics Overview