🔄 Rational Expressions & Equations — Domains & Extraneous Roots

Essential for fraction problems and equation solving in AMC contests.

🎯 Key Ideas

Rational Expressions — Fractions with polynomial numerators and denominators. Domain restrictions occur when denominators equal zero.

Rational Equations — Equations involving rational expressions, solved by cross-multiplying and checking for extraneous solutions.

Domain Restrictions — Values that make denominators zero must be excluded from the domain.

📊 Essential Concepts

Domain Restrictions

ExpressionDomain RestrictionExample
$\frac{1}{x}$$x \neq 0$$x \in \mathbb{R} \setminus {0}$
$\frac{1}{x-2}$$x \neq 2$$x \in \mathbb{R} \setminus {2}$
$\frac{x+1}{x^2-4}$$x \neq \pm 2$$x \in \mathbb{R} \setminus {-2, 2}$

Solving Rational Equations

StepActionExample
1Find common denominator$\frac{1}{x} + \frac{1}{x-1} = \frac{2}{x(x-1)}$
2Cross-multiply$x(x-1) \cdot \frac{1}{x} + x(x-1) \cdot \frac{1}{x-1} = x(x-1) \cdot \frac{2}{x(x-1)}$
3Simplify$(x-1) + x = 2$
4Solve$2x - 1 = 2$ → $x = \frac{3}{2}$
5Check domain$x = \frac{3}{2} \neq 0, 1$ ✓

🎯 Micro-Examples

Example 1: Simplify $\frac{x^2 - 4}{x^2 - 2x}$

  • Factor numerator: $x^2 - 4 = (x-2)(x+2)$
  • Factor denominator: $x^2 - 2x = x(x-2)$
  • Simplify: $\frac{(x-2)(x+2)}{x(x-2)} = \frac{x+2}{x}$ (for $x \neq 2$)
  • Domain: $x \neq 0, 2$

Example 2: Solve $\frac{1}{x} + \frac{1}{x-1} = \frac{2}{x(x-1)}$

  • Domain: $x \neq 0, 1$
  • Cross-multiply: $(x-1) + x = 2$
  • Simplify: $2x - 1 = 2$
  • Solve: $x = \frac{3}{2}$
  • Check: $\frac{3}{2} \neq 0, 1$ ✓

Example 3: Solve $\frac{x+1}{x-2} = \frac{x-3}{x+4}$

  • Domain: $x \neq 2, -4$
  • Cross-multiply: $(x+1)(x+4) = (x-3)(x-2)$
  • Expand: $x^2 + 5x + 4 = x^2 - 5x + 6$
  • Simplify: $10x = 2$
  • Solve: $x = \frac{1}{5}$
  • Check: $\frac{1}{5} \neq 2, -4$ ✓

⚠️ Common Traps & Fixes

Trap: Forgetting to check domain restrictions

  • Fix: Always identify values that make denominators zero
  • Example: $\frac{1}{x-2}$ requires $x \neq 2$

Trap: Not checking for extraneous solutions

  • Fix: Always substitute solutions back into original equation
  • Example: Cross-multiplying can introduce extraneous solutions

Trap: Simplifying incorrectly

  • Fix: Factor completely before canceling
  • Example: $\frac{x^2-4}{x^2-2x} = \frac{(x-2)(x+2)}{x(x-2)} = \frac{x+2}{x}$ (not $\frac{x+2}{x-2}$)

🎯 AMC-Style Worked Example

Problem: Find all real solutions to $\frac{x^2 + x - 6}{x^2 - 4} = \frac{x - 2}{x + 2}$.

Solution:

  1. Factor numerator: $x^2 + x - 6 = (x+3)(x-2)$
  2. Factor denominator: $x^2 - 4 = (x-2)(x+2)$
  3. Rewrite equation: $\frac{(x+3)(x-2)}{(x-2)(x+2)} = \frac{x-2}{x+2}$
  4. Simplify left side: $\frac{x+3}{x+2} = \frac{x-2}{x+2}$ (for $x \neq 2$)
  5. Cross-multiply: $(x+3)(x+2) = (x-2)(x+2)$
  6. Expand: $x^2 + 5x + 6 = x^2 - 4$
  7. Simplify: $5x + 6 = -4$
  8. Solve: $5x = -10$, so $x = -2$
  9. Check domain: $x = -2$ makes denominator zero
  10. Answer: No real solutions (extraneous solution)

Key insight: Always check domain restrictions and verify solutions.

  • Factoring — Essential for simplifying rational expressions
  • Domain — Rational expressions have domain restrictions
  • Extraneous Solutions — Cross-multiplying can introduce extra solutions
  • Word Problems — Rational equations often model real-world situations

📝 Practice Checklist

  • Master domain restrictions
  • Practice simplifying rational expressions
  • Learn to solve rational equations
  • Practice checking for extraneous solutions
  • Understand cross-multiplying technique
  • Work on speed and accuracy

Next: Radicals & Exponents | Prev: Polynomial Theory | Back: Topics Overview