๐Ÿ“ Notation Cheatsheet

Essential symbols and notation for AMC counting and probability problems.

๐Ÿ”ข Counting Notation

SymbolMeaningUsageExample
$n!$FactorialArrangements of $n$ distinct objects$4! = 4 \cdot 3 \cdot 2 \cdot 1 = 24$
$P(n,k)$PermutationsArrangements of $k$ from $n$$P(5,3) = 5 \cdot 4 \cdot 3 = 60$
$\binom{n}{k}$CombinationsSelections of $k$ from $n$$\binom{5}{3} = \frac{5!}{3!2!} = 10$
$C(n,k)$Alternative notationSame as $\binom{n}{k}$$C(5,3) = 10$
$n^k$Permutations with repetition$k$ choices from $n$ with replacement$3^4 = 81$ ways to choose 4 letters from {A,B,C}
$\binom{n+k-1}{k}$Combinations with repetitionStars and bars formula$\binom{4+3-1}{3} = \binom{6}{3} = 20$

๐ŸŽฒ Probability Notation

SymbolMeaningUsageExample
$P(A)$Probability of event $A$Basic probability$P(\text{heads}) = \frac{1}{2}$
$P(A \mid B)$Conditional probabilityProbability of $A$ given $B$$P(\text{rain} \mid \text{cloudy})$
$P(A \cap B)$IntersectionBoth $A$ and $B$ occur$P(\text{red and even})$
$P(A \cup B)$UnionEither $A$ or $B$ occurs$P(\text{red or even})$
$P(A^c)$Complement$A$ does not occur$P(\text{not red}) = 1 - P(\text{red})$
$A \perp B$IndependenceEvents are independent$A \perp B$ means $P(A \cap B) = P(A)P(B)$

๐Ÿ“Š Expected Value Notation

SymbolMeaningUsageExample
$\mathbb{E}[X]$Expected valueAverage value of random variable $X$$\mathbb{E}[\text{dice roll}] = 3.5$
$\text{Var}(X)$VarianceMeasure of spread$\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$
$\mathbb{E}[X \mid Y]$Conditional expectationExpected value given $Y$$\mathbb{E}[X \mid Y = y]$
$I_A$Indicator function1 if $A$ occurs, 0 otherwise$I_{\text{heads}} = \begin{cases} 1 & \text{if heads} \ 0 & \text{if tails} \end{cases}$

๐Ÿ”„ Set Theory Notation

SymbolMeaningUsageExample
$A$Cardinality
$A \subseteq B$SubsetEvery element of $A$ is in $B$${1,2} \subseteq {1,2,3}$
$A \cap B$IntersectionElements in both $A$ and $B$${1,2} \cap {2,3} = {2}$
$A \cup B$UnionElements in $A$ or $B$${1,2} \cup {2,3} = {1,2,3}$
$A \setminus B$Set differenceElements in $A$ but not $B$${1,2,3} \setminus {2} = {1,3}$

๐ŸŽฏ Common Formulas

Basic Counting

  • Addition Principle: $|A \cup B| = |A| + |B| - |A \cap B|$
  • Multiplication Principle: $|A \times B| = |A| \cdot |B|$
  • Complement: $|A^c| = |S| - |A|$ where $S$ is the universal set

Permutations & Combinations

  • Permutations: $P(n,k) = \frac{n!}{(n-k)!}$
  • Combinations: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
  • Circular permutations: $(n-1)!$ (no reflection) or $\frac{(n-1)!}{2}$ (with reflection)

Probability

  • Basic probability: $P(A) = \frac{\text{favorable outcomes}}{\text{total outcomes}}$
  • Conditional probability: $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
  • Independence: $A \perp B$ if and only if $P(A \cap B) = P(A)P(B)$
  • Law of Total Probability: $P(A) = \sum_i P(A \mid B_i)P(B_i)$

Expected Value

  • Definition: $\mathbb{E}[X] = \sum_x x \cdot P(X = x)$
  • Linearity: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$
  • Indicators: $\mathbb{E}[I_A] = P(A)$

๐Ÿšจ Common Mistakes

  • $\binom{n}{k}$ vs $P(n,k)$: Use combinations for selections, permutations for arrangements
  • With vs without replacement: Check if objects can be reused
  • Distinguishable vs indistinguishable: Count identical objects differently
  • Order matters: Permutations for ordered arrangements, combinations for unordered selections

Next: Concept Atlas โ†’ Counting Principles