🧮 Binomial & Multinomial

Advanced counting techniques and identities that frequently appear in AMC problems.

🎯 Key Ideas

Binomial Coefficients

The number $\binom{n}{k}$ represents the number of ways to choose $k$ objects from $n$ distinct objects.

Key Identity: $\binom{n}{k} = \binom{n}{n-k}$ (symmetry)

Multinomial Coefficients

Generalization of binomial coefficients for multiple categories.

Formula: $\binom{n}{k_1, k_2, \ldots, k_r} = \frac{n!}{k_1!k_2!\cdots k_r!}$ where $k_1 + k_2 + \cdots + k_r = n$

📊 Essential Identities

Basic Identities

  • Symmetry: $\binom{n}{k} = \binom{n}{n-k}$
  • Pascal’s Identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
  • Sum of Row: $\sum_{k=0}^{n} \binom{n}{k} = 2^n$

Advanced Identities

  • Vandermonde’s Identity: $\sum_{k=0}^{r} \binom{m}{k}\binom{n}{r-k} = \binom{m+n}{r}$
  • Hockey Stick Identity: $\sum_{i=0}^{k} \binom{n+i}{i} = \binom{n+k+1}{k}$
  • Chu-Vandermonde: $\sum_{k=0}^{n} \binom{x}{k}\binom{y}{n-k} = \binom{x+y}{n}$

💡 Micro-Examples

Basic Binomial

  • Problem: What is $\binom{5}{2}$?
  • Solution: $\binom{5}{2} = \frac{5!}{2!3!} = \frac{120}{2 \cdot 6} = 10$

Pascal’s Identity

  • Problem: Show that $\binom{6}{3} = \binom{5}{2} + \binom{5}{3}$
  • Solution: $\binom{5}{2} + \binom{5}{3} = 10 + 10 = 20 = \binom{6}{3}$ ✓

Vandermonde’s Identity

  • Problem: What is $\sum_{k=0}^{3} \binom{4}{k}\binom{3}{3-k}$?
  • Solution: $\binom{4}{0}\binom{3}{3} + \binom{4}{1}\binom{3}{2} + \binom{4}{2}\binom{3}{1} + \binom{4}{3}\binom{3}{0} = 1 \cdot 1 + 4 \cdot 3 + 6 \cdot 3 + 4 \cdot 1 = 1 + 12 + 18 + 4 = 35 = \binom{7}{3}$

Multinomial

  • Problem: How many ways can you arrange the letters in “MISSISSIPPI”?
  • Solution: $\binom{11}{1,4,4,2} = \frac{11!}{1!4!4!2!} = \frac{39916800}{1 \cdot 24 \cdot 24 \cdot 2} = 34650$ ways

⚠️ Common Traps & Fixes

Trap: Confusing binomial and multinomial

  • Wrong: “How many ways to arrange AABBC?” = $\binom{5}{2,2,1}$ (multinomial)
  • Right: This is actually correct! But make sure you understand when to use each.

Trap: Forgetting the symmetry property

  • Wrong: “What is $\binom{100}{98}$?” = Calculating $\frac{100!}{98!2!}$
  • Right: $\binom{100}{98} = \binom{100}{2} = \frac{100 \cdot 99}{2} = 4950$

Trap: Misapplying Vandermonde’s identity

  • Wrong: “What is $\sum_{k=0}^{5} \binom{3}{k}\binom{4}{k}$?” = Vandermonde
  • Right: This is NOT Vandermonde! Vandermonde requires $\binom{n}{r-k}$ in the second term.

🏆 AMC-Style Worked Example

Problem: What is the sum $\sum_{k=0}^{10} \binom{10}{k}^2$?

Solution:

  • Step 1: Recognize this as a special case of Vandermonde’s identity
  • Step 2: Apply Vandermonde with $m = n = 10$ and $r = 10$: $$\sum_{k=0}^{10} \binom{10}{k}\binom{10}{10-k} = \binom{20}{10}$$
  • Step 3: Since $\binom{10}{k} = \binom{10}{10-k}$, we have: $$\sum_{k=0}^{10} \binom{10}{k}^2 = \binom{20}{10} = 184756$$

Key insight: Vandermonde’s identity often appears in disguised forms!


Next: Inclusion-ExclusionPigeonhole Principle