๐Ÿ”„ Derangements

Permutations where no element appears in its original position, solved using inclusion-exclusion.

๐ŸŽฏ Recognition Cues

  • Keywords: “derangement”, “no fixed points”, “no one in original position”, “hat problem”
  • Setup: Arranging objects so none are in their original position
  • Constraints: All elements must be moved from their original positions

๐Ÿ“‹ Solution Template

  1. Identify the derangement problem:

    • All elements must move: No element in original position
    • Some elements must move: Use inclusion-exclusion
    • Mixed constraints: Combine derangements with other constraints
  2. Apply the appropriate method:

    • All elements: Use derangement formula $!n$
    • Some elements: Use inclusion-exclusion
    • Mixed: Use casework or advanced techniques
  3. Calculate the result:

    • Derangement formula: $!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$
    • Inclusion-exclusion: Subtract cases with fixed points

๐Ÿ’ก Micro-Examples

Basic Derangement

  • Problem: How many ways can you arrange ${1,2,3}$ so no element is in its original position?
  • Solution: $!3 = 3! \sum_{k=0}^{3} \frac{(-1)^k}{k!} = 6 \left(1 - 1 + \frac{1}{2} - \frac{1}{6}\right) = 6 \cdot \frac{1}{3} = 2$

Partial Derangement

  • Problem: How many ways can you arrange ${1,2,3,4}$ so exactly 2 elements are in their original positions?
  • Solution: Choose 2 elements to fix: $\binom{4}{2} = 6$ ways, derange the rest: $!2 = 1$ way. Total: $6 \cdot 1 = 6$ ways

Hat Problem

  • Problem: 5 people put their hats in a box. If hats are randomly distributed, what’s the probability no one gets their own hat?
  • Solution: $P(\text{derangement}) = \frac{!5}{5!} = \frac{44}{120} = \frac{11}{30}$

โš ๏ธ Common Pitfalls & Variants

Pitfall: Confusing derangements with general permutations

  • Wrong: “Arrange ${1,2,3}$ so no element is in position 1” = $!3$
  • Right: This is not a derangement problem. Use regular counting.

Pitfall: Forgetting to account for partial derangements

  • Wrong: “Exactly 2 elements in original positions” = $!2$
  • Right: Choose which 2 elements to fix, then derange the rest.

Pitfall: Misapplying the derangement formula

  • Wrong: “$!n = n! - 1$” (missing the alternating sum)
  • Right: $!n = n! \sum_{k=0}^{n} \frac{(-1)^k}{k!}$

๐Ÿ† AMC-Style Worked Example

Problem: How many ways can you arrange ${1,2,3,4,5}$ so that exactly 3 elements are in their original positions?

Solution:

  • Step 1: Choose 3 elements to fix in their original positions: $\binom{5}{3} = 10$ ways
  • Step 2: The remaining 2 elements must be deranged: $!2 = 1$ way
  • Step 3: Total ways: $10 \cdot 1 = 10$ ways

Verification: Let’s list them out:

  • Fix 1,2,3: 4,5 must be deranged โ†’ 5,4 (1 way)
  • Fix 1,2,4: 3,5 must be deranged โ†’ 5,3 (1 way)
  • Fix 1,2,5: 3,4 must be deranged โ†’ 4,3 (1 way)
  • Fix 1,3,4: 2,5 must be deranged โ†’ 5,2 (1 way)
  • Fix 1,3,5: 2,4 must be deranged โ†’ 4,2 (1 way)
  • Fix 1,4,5: 2,3 must be deranged โ†’ 3,2 (1 way)
  • Fix 2,3,4: 1,5 must be deranged โ†’ 5,1 (1 way)
  • Fix 2,3,5: 1,4 must be deranged โ†’ 4,1 (1 way)
  • Fix 2,4,5: 1,3 must be deranged โ†’ 3,1 (1 way)
  • Fix 3,4,5: 1,2 must be deranged โ†’ 2,1 (1 way)

Total: 10 ways โœ“

Key insight: Use combinations to choose which elements to fix, then derange the rest!


Next: Circular Permutations โ†’ Symmetry Probability