πŸ“ Essential Formulas Bank

ℹ️Quick Reference Guide
Complete reference for all essential AMC geometry formulas with usage notes and micro-examples. Master these formulas for contest success!

πŸ—‚οΈ Table of Contents

πŸ”Ί Triangle Formulas

πŸ’‘πŸŽ― Contest Strategy
Triangle problems are extremely common in AMC contests. Master these area and length formulas!

Area Formulas

⚠️⚠️ Critical for AMC
These area formulas appear in 90% of AMC geometry problems!
FormulaUsageExampleWhen to Use
$A = \frac{1}{2}bh$Basic triangle areaTriangle with base 6, height 4: $A = \frac{1}{2} \cdot 6 \cdot 4 = 12$When you have base and height
$A = \frac{1}{2}ab\sin C$Triangle with two sides and included angleSides 5, 7, angle $60Β°$: $A = \frac{1}{2} \cdot 5 \cdot 7 \cdot \sin 60Β° = \frac{35\sqrt{3}}{4}$When you have two sides and included angle
$A = \sqrt{s(s-a)(s-b)(s-c)}$Heron’s formula (three sides)Sides 3, 4, 5: $s = 6$, $A = \sqrt{6 \cdot 3 \cdot 2 \cdot 1} = 6$When you have all three sides

Length Formulas

Key Formula: $$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$$

FormulaUsageExampleKey Insight
Median length$m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$Sides 3, 4, 5: $m = \frac{1}{2}\sqrt{2 \cdot 16 + 2 \cdot 9 - 25} = \frac{5}{2}$Connects vertex to midpoint of opposite side
Altitude length$h_a = \frac{2A}{a}$Area 6, base 3: $h = \frac{2 \cdot 6}{3} = 4$Perpendicular from vertex to opposite side
Angle bisector$t_a = \frac{2bc}{b+c}\cos\frac{A}{2}$Sides 3, 4, angle $60Β°$: $t = \frac{2 \cdot 3 \cdot 4}{7} \cdot \cos 30Β° = \frac{24\sqrt{3}}{14}$Divides angle into two equal parts

Center Formulas

πŸ“πŸ“ Triangle Centers
These centers are crucial for coordinate geometry and advanced triangle problems!
FormulaUsageExampleCenter Type
Centroid$G = \left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$Vertices $(0,0)$, $(4,0)$, $(2,3)$: $G = (2,1)$Center of mass
Inradius$r = \frac{A}{s}$Area 6, semi-perimeter 6: $r = 1$Radius of inscribed circle
Circumradius$R = \frac{abc}{4A}$Sides 3, 4, 5, area 6: $R = \frac{3 \cdot 4 \cdot 5}{4 \cdot 6} = \frac{5}{2}$Radius of circumscribed circle

β­• Circle Formulas

πŸ’‘πŸŽ― Circle Mastery
Circle problems are high-frequency in AMC contests. Master both basic properties and power theorems!

Basic Properties

Core Circle Formulas:

  • Area: $A = \pi r^2$
  • Circumference: $C = 2\pi r$
  • Diameter: $d = 2r$
FormulaUsageExampleKey Insight
$A = \pi r^2$Circle areaRadius 5: $A = 25\pi$Most common area formula
$C = 2\pi r$CircumferenceRadius 5: $C = 10\pi$Perimeter of circle
$d = 2r$DiameterRadius 5: $d = 10$Longest chord through center

Power of a Point

⚠️⚑ Power Theorems
These power theorems are essential for advanced circle problems and often appear in AMC 12!
FormulaUsageExampleWhen to Use
$PA^2 = PB \cdot PC$Tangent-secantTangent 6, secant segment 4: $6^2 = 4 \cdot PC$, so $PC = 9$When you have tangent and secant
$PA \cdot PB = PC \cdot PD$Two secants/chordsSecant segments 3, 4 and 2, 6: $3 \cdot 4 = 2 \cdot 6 = 12$When you have two intersecting chords/secants

Chord and Arc

Key Formulas:

  • Chord length: $L = 2\sqrt{r^2 - d^2}$
  • Arc length: $s = r\theta$
FormulaUsageExampleKey Insight
$L = 2\sqrt{r^2 - d^2}$Chord lengthRadius 5, distance 3: $L = 2\sqrt{25-9} = 8$Distance from center to chord
$s = r\theta$Arc lengthRadius 5, angle $\frac{\pi}{3}$: $s = \frac{5\pi}{3}$Angle must be in radians

πŸ“ Coordinate Formulas

πŸ’‘πŸ“Š Coordinate Mastery
Coordinate geometry problems are very common in AMC contests. Master these fundamental formulas!

Basic Operations

Essential Coordinate Formulas:

  • Distance: $d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
  • Slope: $m = \frac{y_2-y_1}{x_2-x_1}$
  • Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
FormulaUsageExampleKey Insight
$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$Distance between points$(0,0)$ to $(3,4)$: $d = \sqrt{9+16} = 5$Pythagorean theorem in 2D
$m = \frac{y_2-y_1}{x_2-x_1}$Slope$(1,2)$ to $(3,6)$: $m = \frac{6-2}{3-1} = 2$Rise over run
Midpoint$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$(0,0)$ to $(4,6)$: $(2,3)$Average of coordinates

Area and Lines

πŸ“πŸ“ Line and Circle Equations
These equations are fundamental for coordinate geometry problems!
FormulaUsageExampleWhen to Use
$y = mx + b$Line equationSlope 2, y-intercept 3: $y = 2x + 3$When you have slope and y-intercept
$(x-h)^2 + (y-k)^2 = r^2$Circle equationCenter $(2,3)$, radius 5: $(x-2)^2 + (y-3)^2 = 25$When you have center and radius

πŸ”„ Transformation Formulas

Basic Transformations

FormulaUsageExample
$(x,y) \rightarrow (y,x)$Reflection across $y = x$$(3,4) \rightarrow (4,3)$
$(x,y) \rightarrow (-y,x)$Rotation by $90Β°$$(3,4) \rightarrow (-4,3)$
$(x,y) \rightarrow (x+a,y+b)$Translation by $(a,b)$$(3,4)$ by $(1,2)$: $(4,6)$

Scaling

FormulaUsageExample
$(x,y) \rightarrow (kx,ky)$Homothety by factor $k$$(3,4)$ by factor 2: $(6,8)$

πŸ“¦ 3D Formulas

Volume

FormulaUsageExample
$V = s^3$Cube volumeSide 4: $V = 64$
$V = lwh$Rectangular prismLength 3, width 4, height 5: $V = 60$
$V = \pi r^2 h$Cylinder volumeRadius 3, height 5: $V = 45\pi$
$V = \frac{1}{3}\pi r^2 h$Cone volumeRadius 3, height 5: $V = 15\pi$
$V = \frac{4}{3}\pi r^3$Sphere volumeRadius 3: $V = 36\pi$

Surface Area

FormulaUsageExample
$A = 6s^2$Cube surface areaSide 4: $A = 96$
$A = 2(lw + lh + wh)$Rectangular prismLength 3, width 4, height 5: $A = 94$
$A = 2\pi r^2 + 2\pi rh$Cylinder surface areaRadius 3, height 5: $A = 48\pi$
$A = 4\pi r^2$Sphere surface areaRadius 3: $A = 36\pi$

🎯 Special Formulas

⚠️🎯 Advanced Theorems
These advanced theorems are crucial for AMC 12 and challenging AMC 10 problems!

Ceva and Menelaus

Ceva’s Theorem: $$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1$$

Menelaus’s Theorem: $$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1$$

TheoremUsageExampleWhen to Use
Ceva’sCheck concurrency of ceviansThree cevians meet at a pointProving concurrency
Menelaus’sCheck collinearity of pointsThree points lie on a lineProving collinearity

Ptolemy’s Theorem

πŸ“πŸ“ Cyclic Quadrilaterals
Ptolemy’s theorem is essential for problems involving cyclic quadrilaterals!
FormulaUsageExampleKey Insight
$AC \cdot BD = AB \cdot CD + BC \cdot AD$Cyclic quadrilateralSides 3, 4, 5, 6: $AC \cdot BD = 3 \cdot 5 + 4 \cdot 6 = 39$Product of diagonals = sum of products of opposite sides

Angle Bisector Theorem

Angle Bisector Theorem: $$\frac{BD}{DC} = \frac{AB}{AC}$$

FormulaUsageExampleKey Insight
$\frac{BD}{DC} = \frac{AB}{AC}$Angle bisectorSides 6, 8, bisector divides opposite side: $\frac{BD}{DC} = \frac{6}{8} = \frac{3}{4}$Bisector divides opposite side proportionally

Law of Sines and Cosines

πŸ’‘πŸ”Ί Triangle Laws
These laws are essential for solving triangles with given information!
FormulaUsageExampleWhen to Use
$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$Law of sinesTriangle with angles 30Β°, 60Β°, 90Β° and side opposite 30Β° = 3: $a = 3$, $b = 3\sqrt{3}$, $c = 6$When you have angles and sides
$a^2 = b^2 + c^2 - 2bc\cos A$Law of cosinesSides 3, 4, angle 60Β°: $a^2 = 9 + 16 - 24 \cdot \frac{1}{2} = 13$, so $a = \sqrt{13}$When you have two sides and included angle

Shoelace Area Formula

Shoelace Formula: $$A = \frac{1}{2}\left|\sum_{i=1}^n x_iy_{i+1} - \sum_{i=1}^n y_ix_{i+1}\right|$$

Usage: Find area of any polygon given coordinates of vertices
Example: Triangle with vertices $(0,0)$, $(3,0)$, $(0,4)$: $A = \frac{1}{2}|0 \cdot 0 + 3 \cdot 4 + 0 \cdot 0 - (0 \cdot 0 + 0 \cdot 0 + 4 \cdot 3)| = 6$

Common Mistakes

  1. ⚠️ Wrong units β€” Make sure units match (degrees vs radians, etc.)
  2. πŸ“ Wrong order β€” Check formula order carefully, especially in coordinate geometry
  3. πŸ”’ Missing factors β€” Don’t forget $\frac{1}{2}$ or other factors in area formulas
  4. πŸ“ Sign errors β€” Be careful with signs in coordinate geometry and transformations

πŸŽ‰πŸŽ‰ You're Ready!
You now have a comprehensive geometry formula reference! Practice regularly and use this as your go-to resource during contests.

Next: Tips Overview β†’ | Prev: Formulas Overview β†’ | Back to: Geometry Mastery Guide β†’