๐Ÿ“ Geometry Area And Length Classics

Recommended: 30โ€“40 minutes. No calculator.

Problems

1.

Tags: Triangle Area ยท Easy ยท source: Original (AMC-style)

What is the area of a triangle with base 6 and height 4?

A) $10$ B) $12$ C) $15$ D) $18$ E) $24$

Answer & Solution

Answer: B

Area = $\frac{1}{2} \times$ base ร— height = $\frac{1}{2} \times 6 \times 4 = 12$.

2.

Tags: Rectangle Area ยท Easy ยท source: Original (AMC-style)

What is the area of a rectangle with length 8 and width 5?

A) $13$ B) $26$ C) $35$ D) $40$ E) $45$

Answer & Solution

Answer: D

Area = length ร— width = $8 \times 5 = 40$.

3.

Tags: Circle Area ยท Easy ยท source: Original (AMC-style)

What is the area of a circle with radius 3?

A) $3\pi$ B) $6\pi$ C) $9\pi$ D) $12\pi$ E) $18\pi$

Answer & Solution

Answer: C

Area = $\pi r^2 = \pi \times 3^2 = 9\pi$.

4.

Tags: Square Area ยท Easy ยท source: Original (AMC-style)

What is the area of a square with side length 7?

A) $14$ B) $28$ C) $35$ D) $49$ E) $56$

Answer & Solution

Answer: D

Area = sideยฒ = $7^2 = 49$.

5.

Tags: Parallelogram Area ยท Easy ยท source: Original (AMC-style)

What is the area of a parallelogram with base 9 and height 4?

A) $18$ B) $26$ C) $32$ D) $36$ E) $40$

Answer & Solution

Answer: D

Area = base ร— height = $9 \times 4 = 36$.

6.

Tags: Trapezoid Area ยท Easy ยท source: Original (AMC-style)

What is the area of a trapezoid with bases 5 and 7 and height 3?

A) $15$ B) $18$ C) $21$ D) $24$ E) $27$

Answer & Solution

Answer: B

Area = $\frac{1}{2} \times$ (base1 + base2) ร— height = $\frac{1}{2} \times (5+7) \times 3 = 18$.

7.

Tags: Heron’s Formula ยท Medium ยท source: Original (AMC-style)

What is the area of a triangle with sides 3, 4, and 5?

A) $6$ B) $8$ C) $10$ D) $12$ E) $15$

Answer & Solution

Answer: A

Using Heron's formula: $s = \frac{3+4+5}{2} = 6$, so area = $\sqrt{6(6-3)(6-4)(6-5)} = \sqrt{6 \times 3 \times 2 \times 1} = \sqrt{36} = 6$.

8.

Tags: Circle Sector ยท Medium ยท source: Original (AMC-style)

What is the area of a sector with central angle 60ยฐ in a circle of radius 6?

A) $\pi$ B) $2\pi$ C) $3\pi$ D) $6\pi$ E) $12\pi$

Answer & Solution

Answer: D

Area = $\frac{60ยฐ}{360ยฐ} \times \pi r^2 = \frac{1}{6} \times \pi \times 36 = 6\pi$.

9.

Tags: Regular Polygon ยท Medium ยท source: Original (AMC-style)

What is the area of a regular hexagon with side length 2?

A) $3\sqrt{3}$ B) $6\sqrt{3}$ C) $9\sqrt{3}$ D) $12\sqrt{3}$ E) $18\sqrt{3}$

Answer & Solution

Answer: B

Area = $\frac{1}{2} \times$ perimeter ร— apothem = $\frac{1}{2} \times 12 \times \sqrt{3} = 6\sqrt{3}$.

10.

Tags: Complex Area ยท Medium ยท source: Original (AMC-style)

What is the area of the region bounded by $y = x^2$ and $y = 4$?

A) $\frac{8}{3}$ B) $\frac{16}{3}$ C) $\frac{32}{3}$ D) $\frac{64}{3}$ E) $\frac{128}{3}$

Answer & Solution

Answer: B

The region is bounded by $x = -2$ to $x = 2$. Area = $\int_{-2}^{2} (4 - x^2) dx = [4x - \frac{x^3}{3}]_{-2}^{2} = 16 - \frac{16}{3} = \frac{32}{3}$.

11.

Tags: Advanced Area ยท Hard ยท source: Original (AMC-style)

What is the area of the region bounded by the lines $y = x$, $y = -x$, $x = 1$, and $x = -1$?

A) $1$ B) $2$ C) $3$ D) $4$ E) $5$

Answer & Solution

Answer: B

This forms a square with vertices at (1,1), (1,-1), (-1,-1), and (-1,1). The side length is $\sqrt{2}$, so area = $(\sqrt{2})^2 = 2$.

12.

Tags: Circle Properties ยท Hard ยท source: Original (AMC-style)

In a circle with radius 5, what is the area of a sector with arc length $\pi$?

A) $\frac{\pi}{2}$ B) $\pi$ C) $\frac{3\pi}{2}$ D) $2\pi$ E) $\frac{5\pi}{2}$

Answer & Solution

Answer: E

Arc length = $r\theta$, so $\pi = 5\theta$ and $\theta = \frac{\pi}{5}$. Area = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 25 \times \frac{\pi}{5} = \frac{5\pi}{2}$.

Answer Key

#123456789101112
AnsBDCDDBADBBBE

Back to Geometry Practice โ€ข Back to Geometry Guide