📐 Geometry Mini Mock 25

Recommended: 75–90 minutes. No calculator.

Problems

1.

Tags: Basic Angles · Easy · source: Original (AMC-style)

What is the measure of a right angle?

A) $45°$ B) $60°$ C) $90°$ D) $120°$ E) $180°$

Answer & Solution

Answer: C

A right angle measures $90°$.

2.

Tags: Triangle Angles · Easy · source: Original (AMC-style)

What is the sum of angles in a triangle?

A) $90°$ B) $120°$ C) $150°$ D) $180°$ E) $360°$

Answer & Solution

Answer: D

The sum of angles in any triangle is $180°$.

3.

Tags: Circle Area · Easy · source: Original (AMC-style)

What is the area of a circle with radius 3?

A) $3\pi$ B) $6\pi$ C) $9\pi$ D) $12\pi$ E) $18\pi$

Answer & Solution

Answer: C

Area = $\pi r^2 = \pi \times 3^2 = 9\pi$.

4.

Tags: Rectangle Area · Easy · source: Original (AMC-style)

What is the area of a rectangle with length 5 and width 4?

A) $9$ B) $18$ C) $20$ D) $25$ E) $40$

Answer & Solution

Answer: C

Area = length × width = $5 \times 4 = 20$.

5.

Tags: Pythagorean Theorem · Easy · source: Original (AMC-style)

In a right triangle with legs 3 and 4, what is the hypotenuse?

A) $5$ B) $6$ C) $7$ D) $8$ E) $9$

Answer & Solution

Answer: A

Using $a^2 + b^2 = c^2$: $3^2 + 4^2 = 9 + 16 = 25 = 5^2$, so $c = 5$.

6.

Tags: Square Area · Easy · source: Original (AMC-style)

What is the area of a square with side length 6?

A) $12$ B) $24$ C) $30$ D) $36$ E) $48$

Answer & Solution

Answer: D

Area = side² = $6^2 = 36$.

7.

Tags: Circle Circumference · Easy · source: Original (AMC-style)

What is the circumference of a circle with radius 2?

A) $2\pi$ B) $4\pi$ C) $6\pi$ D) $8\pi$ E) $12\pi$

Answer & Solution

Answer: B

Circumference = $2\pi r = 2\pi \times 2 = 4\pi$.

8.

Tags: Triangle Area · Easy · source: Original (AMC-style)

What is the area of a triangle with base 8 and height 6?

A) $14$ B) $24$ C) $28$ D) $32$ E) $48$

Answer & Solution

Answer: B

Area = $\frac{1}{2} \times$ base × height = $\frac{1}{2} \times 8 \times 6 = 24$.

9.

Tags: Parallelogram Area · Easy · source: Original (AMC-style)

What is the area of a parallelogram with base 7 and height 5?

A) $12$ B) $24$ C) $28$ D) $35$ E) $42$

Answer & Solution

Answer: D

Area = base × height = $7 \times 5 = 35$.

10.

Tags: Trapezoid Area · Easy · source: Original (AMC-style)

What is the area of a trapezoid with bases 4 and 6 and height 3?

A) $12$ B) $15$ C) $18$ D) $21$ E) $24$

Answer & Solution

Answer: B

Area = $\frac{1}{2} \times$ (base1 + base2) × height = $\frac{1}{2} \times (4+6) \times 3 = 15$.

11.

Tags: Similar Triangles · Medium · source: Original (AMC-style)

If two triangles are similar with ratio 2:3, and the smaller triangle has area 4, what is the area of the larger triangle?

A) $6$ B) $8$ C) $9$ D) $12$ E) $16$

Answer & Solution

Answer: C

Area ratio = (side ratio)² = $(2/3)^2 = 4/9$. So larger area = $4 \times (9/4) = 9$.

12.

Tags: Coordinate Distance · Medium · source: Original (AMC-style)

What is the distance between points (0,0) and (3,4)?

A) $3$ B) $4$ C) $5$ D) $6$ E) $7$

Answer & Solution

Answer: C

Distance = $\sqrt{(3-0)^2 + (4-0)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$.

13.

Tags: Slope · Medium · source: Original (AMC-style)

What is the slope of the line through points (1,2) and (4,8)?

A) $1$ B) $2$ C) $3$ D) $4$ E) $6$

Answer & Solution

Answer: B

Slope = $\frac{8-2}{4-1} = \frac{6}{3} = 2$.

14.

Tags: Volume · Medium · source: Original (AMC-style)

What is the volume of a cube with side length 3?

A) $9$ B) $18$ C) $27$ D) $36$ E) $54$

Answer & Solution

Answer: C

Volume = side³ = $3^3 = 27$.

15.

Tags: Regular Polygon · Medium · source: Original (AMC-style)

What is the sum of interior angles in a hexagon?

A) $540°$ B) $720°$ C) $900°$ D) $1080°$ E) $1260°$

Answer & Solution

Answer: B

Sum = $(n-2) \times 180° = (6-2) \times 180° = 4 \times 180° = 720°$.

16.

Tags: Circle Sector · Medium · source: Original (AMC-style)

What is the area of a sector with central angle 60° in a circle of radius 6?

A) $\pi$ B) $2\pi$ C) $3\pi$ D) $6\pi$ E) $12\pi$

Answer & Solution

Answer: D

Area = $\frac{60°}{360°} \times \pi r^2 = \frac{1}{6} \times \pi \times 36 = 6\pi$.

17.

Tags: Triangle Inequality · Medium · source: Original (AMC-style)

Can a triangle have sides of length 3, 4, and 8?

A) Yes B) No C) Sometimes D) Cannot be determined E) Depends on angle

Answer & Solution

Answer: B

No, because $3 + 4 = 7 < 8$, violating the triangle inequality.

18.

Tags: Pythagorean Triples · Medium · source: Original (AMC-style)

What is the hypotenuse of a right triangle with legs 5 and 12?

A) $13$ B) $15$ C) $17$ D) $19$ E) $21$

Answer & Solution

Answer: A

Using $a^2 + b^2 = c^2$: $5^2 + 12^2 = 25 + 144 = 169 = 13^2$, so $c = 13$.

19.

Tags: Angle Bisector · Medium · source: Original (AMC-style)

In triangle ABC, if angle A is 60° and angle B is 40°, what is angle C?

A) $60°$ B) $70°$ C) $80°$ D) $90°$ E) $100°$

Answer & Solution

Answer: C

Since angles in a triangle sum to 180°: $60° + 40° + \angle C = 180°$, so $\angle C = 80°$.

20.

Tags: Area of Regular Polygon · Medium · source: Original (AMC-style)

What is the area of a regular hexagon with side length 2?

A) $3\sqrt{3}$ B) $6\sqrt{3}$ C) $9\sqrt{3}$ D) $12\sqrt{3}$ E) $18\sqrt{3}$

Answer & Solution

Answer: B

Area = $\frac{1}{2} \times$ perimeter × apothem = $\frac{1}{2} \times 12 \times \sqrt{3} = 6\sqrt{3}$.

21.

Tags: Complex Geometry · Hard · source: Original (AMC-style)

In a circle with radius 5, what is the area of a sector with arc length $\pi$?

A) $\frac{\pi}{2}$ B) $\pi$ C) $\frac{3\pi}{2}$ D) $2\pi$ E) $\frac{5\pi}{2}$

Answer & Solution

Answer: E

Arc length = $r\theta$, so $\pi = 5\theta$ and $\theta = \frac{\pi}{5}$. Area = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 25 \times \frac{\pi}{5} = \frac{5\pi}{2}$.

22.

Tags: Advanced Triangles · Hard · source: Original (AMC-style)

In triangle ABC, if AB = 5, BC = 7, and AC = 8, what is the area?

A) $10\sqrt{3}$ B) $12\sqrt{3}$ C) $14\sqrt{3}$ D) $16\sqrt{3}$ E) $18\sqrt{3}$

Answer & Solution

Answer: A

Using Heron's formula: $s = \frac{5+7+8}{2} = 10$, so area = $\sqrt{10(10-5)(10-7)(10-8)} = \sqrt{10 \times 5 \times 3 \times 2} = \sqrt{300} = 10\sqrt{3}$.

23.

Tags: Coordinate Geometry · Hard · source: Original (AMC-style)

What is the area of the triangle with vertices (0,0), (4,0), and (2,3)?

A) $3$ B) $6$ C) $9$ D) $12$ E) $15$

Answer & Solution

Answer: B

Using the formula: area = $\frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)| = \frac{1}{2}|0(0-3) + 4(3-0) + 2(0-0)| = \frac{1}{2} \times 12 = 6$.

24.

Tags: Circle Properties · Hard · source: Original (AMC-style)

Two circles with radii 3 and 5 are externally tangent. What is the distance between their centers?

A) $2$ B) $3$ C) $5$ D) $8$ E) $15$

Answer & Solution

Answer: D

When circles are externally tangent, the distance between centers equals the sum of radii: $3 + 5 = 8$.

25.

Tags: Advanced Area · Hard · source: Original (AMC-style)

What is the area of the region bounded by the lines $y = x$, $y = -x$, $x = 1$, and $x = -1$?

A) $1$ B) $2$ C) $3$ D) $4$ E) $5$

Answer & Solution

Answer: B

This forms a square with vertices at (1,1), (1,-1), (-1,-1), and (-1,1). The side length is $\sqrt{2}$, so area = $(\sqrt{2})^2 = 2$.

Answer Key

#12345678910111213141516171819202122232425
AnsCDCCADBBDBCCBCBDBACBEABDB

Back to Exams PracticeBack to Exams Guide