πŸ“ Geometry Notation Cheatsheet

Master these symbols and conventions for clear, consistent geometric communication.

πŸ”€ Basic Geometric Objects

SymbolMeaningUsage Cue
$A$, $B$, $C$PointsCapital letters for vertices
$\overline{AB}$Line segmentDistance between points A and B
$[AB]$Directed segmentLength with orientation (A to B)
$\overrightarrow{AB}$RayHalf-line from A through B
$\overleftrightarrow{AB}$LineInfinite line through A and B
$\angle ABC$AngleAngle with vertex B, sides BA and BC
$\triangle ABC$TriangleTriangle with vertices A, B, C
$\square ABCD$QuadrilateralQuadrilateral with vertices A, B, C, D

πŸ“ Angle and Line Relationships

SymbolMeaningUsage Cue
$\parallel$ParallelLines that never meet
$\perp$PerpendicularLines meeting at right angles
$\sim$SimilarSame shape, different size
$\cong$CongruentSame shape and size
$\equiv$EquivalentEqual in measure
$\approx$Approximately equalClose in value

πŸ”„ Transformations and Ratios

SymbolMeaningUsage Cue
$k$Scale factorRatio of similarity or homothety
$r$RadiusDistance from center to edge
$R$CircumradiusRadius of circumscribed circle
$r$InradiusRadius of inscribed circle
$s$Semi-perimeterHalf the perimeter: $s = \frac{a+b+c}{2}$

πŸ“Š Coordinate Geometry

SymbolMeaningUsage Cue
$(x,y)$Point coordinatesHorizontal, then vertical
$m$SlopeRise over run: $m = \frac{y_2-y_1}{x_2-x_1}$
$d$DistanceLength between two points
$\theta$Angle measureUsually in degrees or radians

β­• Circle Notation

SymbolMeaningUsage Cue
$\odot O$Circle with center OCenter point in subscript
$\widehat{AB}$Arc ABMinor arc unless specified
$\overline{AB}$Chord ABLine segment connecting two points on circle
$\overrightarrow{AB}$Tangent at ALine touching circle at point A
$P \cdot P$Power of point P$PA \cdot PB$ for chords/secants

πŸ”’ Triangle Centers

SymbolMeaningUsage Cue
$G$CentroidCenter of mass, intersection of medians
$I$IncenterCenter of incircle, intersection of angle bisectors
$O$CircumcenterCenter of circumcircle, intersection of perpendicular bisectors
$H$OrthocenterIntersection of altitudes

πŸ“ Length and Area

SymbolMeaningUsage Cue
$a$, $b$, $c$Triangle sidesOpposite angles A, B, C respectively
$h_a$, $h_b$, $h_c$AltitudesHeight to sides a, b, c
$m_a$, $m_b$, $m_c$MediansFrom vertices to midpoints of opposite sides
$A$AreaSurface area of the figure
$P$PerimeterSum of all side lengths

🎯 Special Notations

SymbolMeaningUsage Cue
$\angle ABC \equiv \angle DEF$Angle equalitySame measure
$\triangle ABC \sim \triangle DEF$Triangle similarityCorresponding angles equal, sides proportional
$\triangle ABC \cong \triangle DEF$Triangle congruenceAll corresponding parts equal
$AB \parallel CD$Parallel linesNever intersect
$AB \perp CD$Perpendicular linesMeet at right angles

πŸ”„ Directed Angles (AMC 12)

SymbolMeaningUsage Cue
$\angle ABC$Directed angleMeasured from BA to BC
$\angle ABC \equiv \angle DEF \pmod{180Β°}$Mod 180Β°Angles differ by multiple of 180Β°
$\angle ABC + \angle DEF \equiv 0Β° \pmod{180Β°}$SupplementarySum to 180Β°

πŸ’‘ Common Patterns

Similarity Statements

  • $\triangle ABC \sim \triangle DEF$ means $\angle A = \angle D$, $\angle B = \angle E$, $\angle C = \angle F$
  • And $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$

Congruence Statements

  • $\triangle ABC \cong \triangle DEF$ means all corresponding parts are equal
  • Order matters: $A \leftrightarrow D$, $B \leftrightarrow E$, $C \leftrightarrow F$

Angle Relationships

  • $\angle ABC = \angle CBA$ (same angle, different notation)
  • $\angle ABC + \angle CBD = \angle ABD$ (angle addition)
  • $\angle ABC + \angle CBA = 180Β°$ (linear pair)

⚠️ Common Mistakes

  • Don’t confuse $\overline{AB}$ (segment) with $AB$ (length)
  • Don’t mix similarity ($\sim$) and congruence ($\cong$) symbols
  • Remember that $\angle ABC$ and $\angle CBA$ are the same angle
  • Be consistent with point order in similarity/congruence statements

Next: Concept Atlas β†’ | Prev: Scope Map β†’ | Back to: Reference Materials β†’