📝 Notation Cheatsheet

Quick reference for number theory symbols and conventions used in AMC problems.

🔢 Basic Symbols

SymbolMeaningUsage CueExample
$a \mid b$$a$ divides $b$“Find all divisors”$3 \mid 12$
$a \nmid b$$a$ does not divide $b$“Not divisible by”$5 \nmid 12$
$\gcd(a,b)$Greatest common divisor“Find the GCD”$\gcd(12,18) = 6$
$\operatorname{lcm}(a,b)$Least common multiple“Find the LCM”$\operatorname{lcm}(4,6) = 12$
$p$Prime number“Let $p$ be prime”$p = 7$
$p^k \parallel n$$p^k$ exactly divides $n$“Highest power of $p$”$2^3 \parallel 24$

🔄 Congruence Notation

SymbolMeaningUsage CueExample
$a \equiv b \pmod{m}$$a$ is congruent to $b$ modulo $m$“Find remainder”$17 \equiv 2 \pmod{5}$
$a \not\equiv b \pmod{m}$$a$ is not congruent to $b$ modulo $m$“Not equivalent”$17 \not\equiv 3 \pmod{5}$
$a^{-1} \pmod{m}$Modular inverse of $a$ modulo $m$“Find inverse”$3^{-1} \equiv 2 \pmod{5}$
$\mathbb{Z}_m$Integers modulo $m$“Residue classes”$\mathbb{Z}_5 = {0,1,2,3,4}$

📊 Valuation & Factorization

SymbolMeaningUsage CueExample
$v_p(n)$$p$-adic valuation of $n$“Highest power of $p$”$v_2(24) = 3$
$n = \prod p_i^{e_i}$Prime factorization“Factor completely”$24 = 2^3 \cdot 3^1$
$p^k \mid n$$p^k$ divides $n$“Divisible by $p^k$”$2^3 \mid 24$
$p^{k+1} \nmid n$$p^{k+1}$ does not divide $n$“Not divisible by $p^{k+1}$”$2^4 \nmid 24$

🔢 Number Theory Functions

SymbolMeaningUsage CueExample
$\varphi(n)$Euler’s totient function“Count coprime numbers”$\varphi(10) = 4$
$\tau(n)$Number of divisors“Count divisors”$\tau(12) = 6$
$\sigma(n)$Sum of divisors“Sum of divisors”$\sigma(12) = 28$
$\operatorname{ord}_m(a)$Order of $a$ modulo $m$“Find cycle length”$\operatorname{ord}_5(2) = 4$

🎯 Special Sets & Intervals

SymbolMeaningUsage CueExample
$\mathbb{N}$Natural numbers“Positive integers”$\mathbb{N} = {1,2,3,\ldots}$
$\mathbb{Z}$Integers“All integers”$\mathbb{Z} = {\ldots,-1,0,1,\ldots}$
$\mathbb{Z}^+$Positive integers“Positive integers”$\mathbb{Z}^+ = {1,2,3,\ldots}$
$[a,b]$Closed interval“From $a$ to $b$ inclusive”$[1,5] = {1,2,3,4,5}$
$(a,b)$Open interval“From $a$ to $b$ exclusive”$(1,5) = {2,3,4}$

⚡ Modular Arithmetic Rules

RuleFormulaUsage Cue
Addition$(a + b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$“Add then reduce”
Multiplication$(ab) \bmod m = ((a \bmod m)(b \bmod m)) \bmod m$“Multiply then reduce”
Exponentiation$a^b \bmod m = (a \bmod m)^b \bmod m$“Reduce base first”
Inverse$a \cdot a^{-1} \equiv 1 \pmod{m}$ when $\gcd(a,m) = 1$“Find multiplicative inverse”

🔍 Common Patterns

PatternMeaningUsage Cue
$a \equiv 0 \pmod{m}$$m$ divides $a$“Divisible by $m$”
$a \equiv 1 \pmod{m}$$a$ leaves remainder $1$“One more than multiple”
$a \equiv -1 \pmod{m}$$a$ leaves remainder $m-1$“One less than multiple”
$a^2 \equiv 1 \pmod{m}$$a$ is self-inverse“Square is $1$ mod $m$”

⚠️ Common Mistakes

  • Don’t confuse: $\gcd(a,b)$ vs $\operatorname{lcm}(a,b)$
  • Remember: $a \mid b$ means $b$ is divisible by $a$ (not the other way around)
  • Watch out: Modular arithmetic is not the same as regular arithmetic
  • Check: Always verify your modular calculations with small examples

Next: Browse the Concept Atlas for quick topic overviews.