🗺️ AMC 10 vs AMC 12 Scope Map

This matrix shows which number theory topics are tested in each contest level.

📊 Coverage Matrix

TopicAMC 10AMC 12Notes
Basic Divisibility✅ Core✅ CorePrimes, composite numbers, divisibility rules
GCD & LCM✅ Core✅ CoreEuclidean algorithm, relationship $ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$
Prime Factorization✅ Core✅ CoreUnique factorization, prime powers
Basic Congruences✅ Core✅ Core$a \equiv b \pmod{m}$, modular arithmetic
Modular Inverses⚠️ Stretch✅ CoreWhen $\gcd(a,m) = 1$
Fermat’s Little Theorem⚠️ Stretch✅ Often$a^{p-1} \equiv 1 \pmod{p}$ for prime $p$
Euler’s Theorem✅ Often$a^{\varphi(m)} \equiv 1 \pmod{m}$
Order Theory✅ Often$\operatorname{ord}_m(a)$, cycles, last digits
Chinese Remainder Theorem✅ OftenSystems of congruences
Linear Diophantine✅ Core✅ Core$ax + by = c$, coin problems
Pythagorean Triples✅ Core✅ CoreParametrization, primitive triples
Sum/Diff of Squares⚠️ Stretch✅ Often$a^2 + b^2 = c^2$, $a^2 - b^2 = c^2$
Legendre’s Formula✅ Often$v_p(n!) = \sum_{k \geq 1} \left\lfloor \frac{n}{p^k} \right\rfloor$
Divisor Functions⚠️ Stretch✅ Often$\tau(n)$, $\sigma(n)$, multiplicativity
Binomial Divisibility⚠️ StretchLucas theorem, $p$-adic valuation
Digit Problems✅ Core✅ CoreBase conversion, digital sums
Divisibility Tests✅ Core✅ CoreRules for 2, 3, 5, 9, 11
Parity Arguments✅ Core✅ CoreEven/odd, coloring techniques
Pigeonhole Principle✅ Core✅ CoreSubset sums, residue classes

🎯 Study Priorities

AMC 10 Focus

  • Must Know: Divisibility, GCD/LCM, basic congruences, linear Diophantine, Pythagorean triples
  • Nice to Have: Modular inverses, Fermat’s Little Theorem, digit problems
  • Skip: CRT, Euler’s theorem, order theory, Legendre’s formula

AMC 12 Focus

  • Must Know: Everything from AMC 10 plus modular inverses, Fermat’s Little Theorem, Euler’s theorem
  • Often Tested: CRT, order theory, Legendre’s formula, divisor functions
  • Stretch Goals: Advanced binomial divisibility, complex Diophantine equations

📈 Difficulty Progression

LevelTypical ProblemsKey Techniques
AMC 10 EasyBasic divisibility, simple congruencesDirect calculation, small cases
AMC 10 MediumGCD/LCM relationships, modular arithmeticEuclidean algorithm, modular properties
AMC 10 HardLinear Diophantine, Pythagorean triplesParameterization, systematic search
AMC 12 EasyModular inverses, Fermat’s Little TheoremQuick modular calculations
AMC 12 MediumCRT, order theory, Legendre’s formulaSystematic problem-solving
AMC 12 HardAdvanced Diophantine, complex modular systemsMultiple techniques combined

🔍 Recognition Cues

AMC 10 Signals

  • “Find the remainder when…”
  • “How many positive divisors…”
  • “What is the smallest positive integer…”
  • “Find all pairs $(x,y)$ such that…”

AMC 12 Signals

  • “Solve the system of congruences…”
  • “Find the order of $a$ modulo $m$…”
  • “How many trailing zeros in $n!$…”
  • “Find the last digit of $a^b$…”

Next: Check the Notation Cheatsheet for quick symbol reference.