π Complete Formula Bank
ποΈ Table of Contents
- π Functions & Transformations
- π― Polynomials & Rational Functions
- π’ Exponents & Logarithms
- π Trigonometry
- π Complex Numbers
- π Sequences & Series
- π Coordinate Geometry
- βοΈ Inequalities
- π― Vectors (AMC 12)
- π Quick Navigation
π Functions & Transformations
Domain Restrictions
| Function Type | Restriction | Example | Key Insight |
|---|---|---|---|
| Square roots | $\sqrt{f(x)}$ requires $f(x) \geq 0$ | $\sqrt{x-2}$ needs $x \geq 2$ | Radicand must be non-negative |
| Logarithms | $\log_a f(x)$ requires $f(x) > 0$ and $a > 0, a \neq 1$ | $\log(x+1)$ needs $x > -1$ | Argument must be positive |
| Fractions | $\frac{f(x)}{g(x)}$ requires $g(x) \neq 0$ | $\frac{1}{x-3}$ needs $x \neq 3$ | Denominator cannot be zero |
Example: Domain of $\sqrt{x-2} + \log(x+1)$ is $x \geq 2$ and $x > -1$ β $x \geq 2$
Function Composition
Key Rules:
- $(f \circ g)(x) = f(g(x))$ (apply $g$ first, then $f$)
- $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$ (reverse order for inverses)
Example: If $f(x) = x^2$ and $g(x) = x+1$, then $(f \circ g)(x) = f(x+1) = (x+1)^2$
Transformations
| Type | Formula | Effect | Key Insight |
|---|---|---|---|
| Vertical shift | $f(x) + k$ | Shifts up $k$ units | Add to output |
| Horizontal shift | $f(x-h)$ | Shifts right $h$ units | Subtract from input |
| Vertical scaling | $af(x)$ | Scales by factor $a$ | Multiply output |
| Horizontal scaling | $f(bx)$ | Scales by factor $\frac{1}{b}$ | Divide input |
Example: $f(x) = 2(x-1)^2 + 3$ is $x^2$ shifted right 1, scaled by 2, shifted up 3
π― Polynomials & Rational Functions
Key Concepts: Vieta’s formulas, factor theorems, and common factorizations
Vieta’s Formulas (Quadratic)
π For $ax^2 + bx + c = 0$ with roots $r_1, r_2$:
- Sum: $r_1 + r_2 = -\frac{b}{a}$
- Product: $r_1 r_2 = \frac{c}{a}$
π‘ Example: $x^2 - 5x + 6 = 0$ has roots with sum 5 and product 6
Vieta’s Formulas (Cubic)
π For $ax^3 + bx^2 + cx + d = 0$ with roots $r_1, r_2, r_3$:
- Sum: $r_1 + r_2 + r_3 = -\frac{b}{a}$
- Sum of products: $r_1 r_2 + r_1 r_3 + r_2 r_3 = \frac{c}{a}$
- Product: $r_1 r_2 r_3 = -\frac{d}{a}$
π‘ Example: $x^3 - 6x^2 + 11x - 6 = 0$ has roots with sum 6, sum of products 11, product 6
Remainder & Factor Theorems
- Remainder: When $p(x)$ is divided by $(x-a)$, remainder is $p(a)$
- Factor: $(x-a)$ is a factor of $p(x)$ if and only if $p(a) = 0$
π‘ Example: Remainder when $x^3 - 2x + 1$ is divided by $(x-2)$ is $8 - 4 + 1 = 5$
Common Factorizations
| Pattern | Formula |
|---|---|
| Difference of squares | $a^2 - b^2 = (a-b)(a+b)$ |
| Perfect squares | $a^2 \pm 2ab + b^2 = (a \pm b)^2$ |
| Sum/difference of cubes | $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$ |
π‘ Example: $x^3 - 8 = (x-2)(x^2 + 2x + 4)$
π’ Exponents & Logarithms
Key Concepts: Exponent laws, logarithm properties, and special values
Exponent Laws
| Rule | Formula |
|---|---|
| Product | $a^x \cdot a^y = a^{x+y}$ |
| Quotient | $\frac{a^x}{a^y} = a^{x-y}$ |
| Power | $(a^x)^y = a^{xy}$ |
| Power of product | $(ab)^x = a^x b^x$ |
| Power of quotient | $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$ |
π‘ Example: $2^3 \cdot 2^4 = 2^{3+4} = 2^7 = 128$
Logarithm Laws
| Rule | Formula |
|---|---|
| Product | $\log_a(xy) = \log_a x + \log_a y$ |
| Quotient | $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$ |
| Power | $\log_a(x^y) = y \log_a x$ |
| Change of base | $\log_a x = \frac{\log_b x}{\log_b a}$ |
π‘ Example: $\log_2 8 = \frac{\log 8}{\log 2} = \frac{0.9031}{0.3010} = 3$
Special Values
| Expression | Value | Condition |
|---|---|---|
| $a^0$ | $1$ | $a \neq 0$ |
| $a^{-x}$ | $\frac{1}{a^x}$ | $a \neq 0$ |
| $\log_a 1$ | $0$ | $a > 0, a \neq 1$ |
| $\log_a a$ | $1$ | $a > 0, a \neq 1$ |
π‘ Example: $5^0 = 1$, $2^{-3} = \frac{1}{8}$, $\log_3 1 = 0$, $\log_5 5 = 1$
π Trigonometry
Unit Circle Values
| Angle | Radians | $\sin$ | $\cos$ | $\tan$ | Memory Trick |
|---|---|---|---|---|---|
| $0Β°$ | $0$ | $0$ | $1$ | $0$ | Starting point |
| $30Β°$ | $\frac{\pi}{6}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ | Small angle, small sine |
| $45Β°$ | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | $1$ | Equal sine and cosine |
| $60Β°$ | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\sqrt{3}$ | Large angle, large sine |
| $90Β°$ | $\frac{\pi}{2}$ | $1$ | $0$ | undefined | Maximum sine |
Fundamental Identities
| Identity | Formula |
|---|---|
| Pythagorean | $\sin^2\theta + \cos^2\theta = 1$ |
| Quotient | $\tan\theta = \frac{\sin\theta}{\cos\theta}$ |
| Reciprocal | $\csc\theta = \frac{1}{\sin\theta}$ |
| $\sec\theta = \frac{1}{\cos\theta}$ | |
| $\cot\theta = \frac{1}{\tan\theta}$ |
Example: If $\sin\theta = \frac{3}{5}$, then $\cos\theta = \pm\frac{4}{5}$ and $\tan\theta = \pm\frac{3}{4}$
Angle Transformation Identities
| Function | $\theta$ | $90Β°-\theta$ | $180Β°-\theta$ | $180Β°+\theta$ | $-\theta$ | Key Pattern |
|---|---|---|---|---|---|---|
| $\sin$ | $\sin\theta$ | $\cos\theta$ | $\sin\theta$ | $-\sin\theta$ | $-\sin\theta$ | Sine is odd |
| $\cos$ | $\cos\theta$ | $\sin\theta$ | $-\cos\theta$ | $-\cos\theta$ | $\cos\theta$ | Cosine is even |
| $\tan$ | $\tan\theta$ | $\cot\theta$ | $-\tan\theta$ | $\tan\theta$ | $-\tan\theta$ | Tangent is odd |
| $\cot$ | $\cot\theta$ | $\tan\theta$ | $-\cot\theta$ | $\cot\theta$ | $-\cot\theta$ | Cotangent is odd |
Example: $\sin(180Β°-\theta) = \sin\theta$, $\cos(90Β°-\theta) = \sin\theta$, $\tan(-\theta) = -\tan\theta$
Addition Formulas
Example: $\sin 75Β° = \sin(45Β° + 30Β°) = \sin 45Β° \cos 30Β° + \cos 45Β° \sin 30Β° = \frac{\sqrt{6} + \sqrt{2}}{4}$
Sum-to-Product Formulas
π Conversion Formulas: Transform sums/differences into products for easier manipulation
π‘ Example: $\sin 75Β° + \sin 15Β° = 2\sin\left(\frac{75Β°+15Β°}{2}\right)\cos\left(\frac{75Β°-15Β°}{2}\right) = 2\sin 45Β° \cos 30Β° = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$
Double Angle Formulas
$$ \begin{aligned} \sin(2\theta) &= 2\sin\theta\cos\theta \cr \cos(2\theta) &= \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta \cr \tan(2\theta) &= \frac{2\tan\theta}{1 - \tan^2\theta} \end{aligned} $$
Example: If $\sin\theta = \frac{3}{5}$, then $\sin(2\theta) = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25}$
Half Angle Formulas
Β½ Formulas: Express trigonometric functions of half angles in terms of full angles
π‘ Example: If $\cos\theta = \frac{3}{5}$, then $\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \frac{3}{5}}{2}} = \pm\sqrt{\frac{4}{5}} = \pm\frac{2\sqrt{5}}{5}$
Laws of Sines & Cosines
πΊ Triangle Laws: Essential for solving triangles with given information
- Law of Sines: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- Law of Cosines: $c^2 = a^2 + b^2 - 2ab\cos C$
- Area: $A = \frac{1}{2}ab\sin C$
π‘ Example: Triangle with sides 3, 4, 5 has area $A = \frac{1}{2} \cdot 3 \cdot 4 \cdot \sin 90Β° = 6$
π Complex Numbers
Polar Form
Complex Number Representations:
| Form | Formula | Description |
|---|---|---|
| Rectangular | $z = a + bi$ | Standard form |
| Polar | $z = re^{i\theta} = r(\cos\theta + i\sin\theta)$ | Polar/exponential form |
| Modulus | $|z| = \sqrt{a^2 + b^2}$ | Magnitude of $z$ |
| Argument | $\arg(z) = \arctan\left(\frac{b}{a}\right)$ | Angle with positive $x$-axis |
Example: $1 + i = \sqrt{2}e^{i\pi/4} = \sqrt{2}(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4})$
Complex Conjugate
| Property | Formula | Example | Key Insight |
|---|---|---|---|
| Rectangular conjugate | $\overline{a + bi} = a - bi$ | $\overline{3 + 4i} = 3 - 4i$ | Flip sign of imaginary part |
| Polar conjugate | $\overline{re^{i\theta}} = re^{-i\theta}$ | $\overline{2e^{i\pi/3}} = 2e^{-i\pi/3}$ | Change sign of angle |
| Product with conjugate | $z \cdot \overline{z} = |z|^2$ | $(3+4i)(3-4i) = 25$ | Always gives real number |
| Sum with conjugate | $z + \overline{z} = 2\text{Re}(z)$ | $(3+4i) + (3-4i) = 6$ | Twice the real part |
| Difference with conjugate | $z - \overline{z} = 2i\text{Im}(z)$ | $(3+4i) - (3-4i) = 8i$ | Twice imaginary part times $i$ |
Rotation Formulas
Rotation Formulas:
| Transformation | Formula |
|---|---|
| Rotation by angle $\theta$ | $z^\prime = ze^{i\theta}$ |
| Counterclockwise 90Β° | $z^\prime = iz$ |
| Counterclockwise 180Β° | $z^\prime = -z$ |
| Reflection across x-axis | $z^\prime = \overline{z}$ |
| Transformation | Formula | Example | Key Insight |
|---|---|---|---|
| General rotation | $z^{\prime} = ze^{i\theta}$ | Rotate $1+i$ by $\pi/2$: $(1+i)e^{i\pi/2} = (1+i)i = -1+i$ | Multiply by $e^{i\theta}$ |
| 90Β° rotation | $z^{\prime} = iz$ | Rotate $2+3i$ by 90Β°: $i(2+3i) = -3+2i$ | Multiply by $i$ |
| 180Β° rotation | $z^{\prime} = -z$ | Rotate $1+2i$ by 180Β°: $-(1+2i) = -1-2i$ | Multiply by $-1$ |
De Moivre’s Theorem
Example: $(1 + i)^4 = (\sqrt{2}e^{i\pi/4})^4 = 4e^{i\pi} = 4(-1) = -4$
Roots of Unity
| Property | Formula | Description |
|---|---|---|
| $n$-th roots | $\omega_k = e^{i2\pi k/n}$ | $k = 0, 1, \ldots, n-1$ |
| Sum | $\sum_{k=0}^{n-1} \omega_k = 0$ | The sum of all $n$-th roots of unity |
| Product | $\prod_{k=0}^{n-1} \omega_k = (-1)^{n-1}$ | The product of all $n$-th roots of unity |
| Property | Formula | Example | Key Insight |
|---|---|---|---|
| $n$-th roots | $\omega_k = e^{i2\pi k/n}$ | 4th roots: $1, i, -1, -i$ | Equally spaced on unit circle |
| Sum of roots | $\sum_{k=0}^{n-1} \omega_k = 0$ | $1 + i + (-1) + (-i) = 0$ | Always zero for $n > 1$ |
| Product of roots | $\prod_{k=0}^{n-1} \omega_k = (-1)^{n-1}$ | $1 \cdot i \cdot (-1) \cdot (-i) = 1$ | Depends on parity of $n$ |
π Sequences & Series
Key Concepts: Arithmetic and geometric sequences, binomial theorem
Arithmetic Sequences
- General term: $a_n = a_1 + (n-1)d$
- Sum: $S_n = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}[2a_1 + (n-1)d]$
Example: Sum of first 10 odd numbers: $S_{10} = \frac{10}{2}(1 + 19) = 100$
Geometric Sequences
- General term: $a_n = a_1 r^{n-1}$
- Finite sum: $S_n = a_1 \frac{1-r^n}{1-r}$ (for $r \neq 1$)
- Infinite sum: $S_{\infty} = \frac{a_1}{1-r}$ (for $|r| < 1$)
Example: Sum of $1 + \frac{1}{2} + \frac{1}{4} + \cdots = \frac{1}{1-\frac{1}{2}} = 2$
Binomial Theorem
Binomial coefficient: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$
Example: $(x+y)^3 = x^3 + 3x^2y + 3xy^2 + y^3$
π Coordinate Geometry
Key Concepts: Distance, lines, circles, and area formulas
Distance & Midpoint
- Distance: $d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
- Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
Example: Distance between $(1,2)$ and $(4,6)$ is $\sqrt{(4-1)^2 + (6-2)^2} = 5$
Lines
- Slope: $m = \frac{y_2-y_1}{x_2-x_1}$
- Point-slope: $y - y_1 = m(x - x_1)$
- Slope-intercept: $y = mx + b$
Example: Line through $(1,2)$ with slope 3: $y - 2 = 3(x - 1)$ or $y = 3x - 1$
Circles
- Standard form: $(x-h)^2 + (y-k)^2 = r^2$ (center $(h,k)$, radius $r$)
- General form: $x^2 + y^2 + Dx + Ey + F = 0$
Example: Circle with center $(2,-3)$ and radius 5: $(x-2)^2 + (y+3)^2 = 25$
Area Formulas
- Triangle: $A = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|$
- Shoelace formula: $A = \frac{1}{2}\left|\sum_{i=1}^n (x_i y_{i+1} - x_{i+1} y_i)\right|$
Example: Triangle with vertices $(0,0)$, $(3,0)$, $(0,4)$ has area $A = \frac{1}{2}|0(0-4) + 3(4-0) + 0(0-0)| = 6$
βοΈ Inequalities
Key Concepts: AM-GM, Cauchy-Schwarz, and triangle inequality
AM-GM Inequality
Example: $\frac{x + \frac{1}{x}}{2} \geq \sqrt{x \cdot \frac{1}{x}} = 1$ β $x + \frac{1}{x} \geq 2$
Cauchy-Schwarz Inequality
- $(\sum_{i=1}^n a_i b_i)^2 \leq (\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2)$
- Equality: When vectors are proportional
Example: $(2x + 3y)^2 \leq (2^2 + 3^2)(x^2 + y^2) = 13(x^2 + y^2)$
Triangle Inequality
- $|a + b| \leq |a| + |b|$
- $|a - b| \geq ||a| - |b||$
Example: $|x + y| \leq |x| + |y|$ for all real $x, y$
π― Vectors (AMC 12)
Key Concepts: Vector operations, dot product, and geometric applications
Basic Operations
- Magnitude: $|\vec{v}| = \sqrt{v_1^2 + v_2^2}$
- Addition: $\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$
- Scalar multiplication: $k\vec{v} = \langle kv_1, kv_2 \rangle$
Example: $|\langle 3, 4 \rangle| = \sqrt{3^2 + 4^2} = 5$
Dot Product
- Component form: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$
- Geometric: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$
- Perpendicular: $\vec{a} \cdot \vec{b} = 0$
Example: $\langle 2, 3 \rangle \cdot \langle -1, 4 \rangle = 2(-1) + 3(4) = 10$
π Back to: Essential Formulas