📘 Precalculus Laws Of Sines Cosines (12 Focused Problems)

Recommended: 30–40 minutes. No calculator.

Problems

1.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #1

What is the value of $\sin(30°) + \cos(60°)$?

A) $0$ B) $\frac{1}{2}$ C) $1$ D) $\frac{\sqrt{3}}{2}$ E) $\sqrt{2}$

Answer & Solution

Answer: C

Using exact values: $\sin(30°) = \frac{1}{2}$ and $\cos(60°) = \frac{1}{2}$, so $\sin(30°) + \cos(60°) = \frac{1}{2} + \frac{1}{2} = 1$.

2.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #2

If $f(x) = 2^x$ and $g(x) = \log_2(x)$, what is $f(g(8))$?

A) $2$ B) $3$ C) $8$ D) $16$ E) $64$

Answer & Solution

Answer: C

First, $g(8) = \log_2(8) = 3$. Then $f(g(8)) = f(3) = 2^3 = 8$.

3.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #3

What is the period of $y = \sin(3x)$?

A) $\frac{\pi}{3}$ B) $\frac{2\pi}{3}$ C) $\pi$ D) $2\pi$ E) $3\pi$

Answer & Solution

Answer: B

For $y = \sin(bx)$, the period is $\frac{2\pi}{b}$. Here $b = 3$, so the period is $\frac{2\pi}{3}$.

4.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #4

If $z = 1 + i$, what is $|z|$?

A) $1$ B) $\sqrt{2}$ C) $2$ D) $\sqrt{3}$ E) $\sqrt{5}$

Answer & Solution

Answer: B

For $z = a + bi$, $|z| = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$.

5.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #5

What is the value of $\tan(45°)$?

A) $0$ B) $\frac{1}{2}$ C) $1$ D) $\sqrt{2}$ E) $\sqrt{3}$

Answer & Solution

Answer: C

Using the exact value, $\tan(45°) = 1$.

6.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #6

What is the value of $\sin(30°) + \cos(60°)$?

A) $0$ B) $\frac{1}{2}$ C) $1$ D) $\frac{\sqrt{3}}{2}$ E) $\sqrt{2}$

Answer & Solution

Answer: C

Using exact values: $\sin(30°) = \frac{1}{2}$ and $\cos(60°) = \frac{1}{2}$, so $\sin(30°) + \cos(60°) = \frac{1}{2} + \frac{1}{2} = 1$.

7.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #7

If $f(x) = 2^x$ and $g(x) = \log_2(x)$, what is $f(g(8))$?

A) $2$ B) $3$ C) $8$ D) $16$ E) $64$

Answer & Solution

Answer: C

First, $g(8) = \log_2(8) = 3$. Then $f(g(8)) = f(3) = 2^3 = 8$.

8.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #8

What is the period of $y = \sin(3x)$?

A) $\frac{\pi}{3}$ B) $\frac{2\pi}{3}$ C) $\pi$ D) $2\pi$ E) $3\pi$

Answer & Solution

Answer: B

For $y = \sin(bx)$, the period is $\frac{2\pi}{b}$. Here $b = 3$, so the period is $\frac{2\pi}{3}$.

9.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #9

If $z = 1 + i$, what is $|z|$?

A) $1$ B) $\sqrt{2}$ C) $2$ D) $\sqrt{3}$ E) $\sqrt{5}$

Answer & Solution

Answer: B

For $z = a + bi$, $|z| = \sqrt{a^2 + b^2} = \sqrt{1^2 + 1^2} = \sqrt{2}$.

10.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #10

What is the value of $\tan(45°)$?

A) $0$ B) $\frac{1}{2}$ C) $1$ D) $\sqrt{2}$ E) $\sqrt{3}$

Answer & Solution

Answer: C

Using the exact value, $\tan(45°) = 1$.

11.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #11

What is the value of $\sin(30°) + \cos(60°)$?

A) $0$ B) $\frac{1}{2}$ C) $1$ D) $\frac{\sqrt{3}}{2}$ E) $\sqrt{2}$

Answer & Solution

Answer: C

Using exact values: $\sin(30°) = \frac{1}{2}$ and $\cos(60°) = \frac{1}{2}$, so $\sin(30°) + \cos(60°) = \frac{1}{2} + \frac{1}{2} = 1$.

12.

Tags: Precalculus · Difficulty (E/M/H) · source: AMC10 2020 #12

If $f(x) = 2^x$ and $g(x) = \log_2(x)$, what is $f(g(8))$?

A) $2$ B) $3$ C) $8$ D) $16$ E) $64$

Answer & Solution

Answer: C

First, $g(8) = \log_2(8) = 3$. Then $f(g(8)) = f(3) = 2^3 = 8$.

Answer Key

#123456789101112
AnsAAAAAAAAAAAA

Back to Precalculus Practice • Back to Precalculus Guide