βοΈ Inequalities AM-GM & Cauchy
Master inequality techniques using Arithmetic-Geometric Mean and Cauchy-Schwarz inequalities.
π― Recognition Cues
Look for these patterns:
- Optimization: “find minimum/maximum of…”
- Symmetric expressions: $x + y + z$ with $xyz = k$
- Sums of squares: $x^2 + y^2 + z^2$ with constraints
- Fractional expressions: $\frac{a}{b} + \frac{b}{a}$
- Geometric applications: areas, volumes, distances
π Template Solution (4 Steps)
- Identify the inequality type (AM-GM vs Cauchy-Schwarz)
- Set up the inequality with proper grouping
- Apply the inequality theorem
- Check equality conditions
π Common Patterns
Pattern 1: Basic AM-GM
Template: $\frac{a_1 + a_2 + \cdots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \cdots a_n}$
Example: Find minimum of $x + \frac{1}{x}$ for $x > 0$
Solution:
- Apply AM-GM: $\frac{x + \frac{1}{x}}{2} \geq \sqrt{x \cdot \frac{1}{x}} = 1$
- Solve: $x + \frac{1}{x} \geq 2$
- Equality: When $x = \frac{1}{x}$ β $x = 1$
- Answer: Minimum is 2, achieved when $x = 1$
Pattern 2: Weighted AM-GM
Template: Use different weights for different terms
Example: If $a, b, c > 0$ and $a + b + c = 1$, find minimum of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$
Solution:
- Apply AM-GM: $\frac{\frac{1}{a} + \frac{1}{b} + \frac{1}{c}}{3} \geq \sqrt[3]{\frac{1}{abc}}$
- Also: $\frac{a + b + c}{3} \geq \sqrt[3]{abc}$ β $abc \leq \frac{1}{27}$
- Combine: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geq 3\sqrt[3]{27} = 9$
- Equality: When $a = b = c = \frac{1}{3}$
Pattern 3: Cauchy-Schwarz
Template: $(\sum a_i b_i)^2 \leq (\sum a_i^2)(\sum b_i^2)$
Example: Find maximum of $2x + 3y$ subject to $x^2 + y^2 = 1$
Solution:
- Apply Cauchy-Schwarz: $(2x + 3y)^2 \leq (2^2 + 3^2)(x^2 + y^2) = 13 \cdot 1 = 13$
- Solve: $2x + 3y \leq \sqrt{13}$
- Equality: When $\frac{2}{x} = \frac{3}{y}$ and $x^2 + y^2 = 1$
- Answer: Maximum is $\sqrt{13}$
Pattern 4: Constrained Optimization
Template: Use Lagrange multipliers or substitution
Example: Find maximum of $xy$ subject to $x + y = 6$
Solution:
- Substitute: $y = 6 - x$
- Function: $f(x) = x(6-x) = 6x - x^2$
- Maximum: $f’(x) = 6 - 2x = 0$ β $x = 3$ β $y = 3$
- Answer: Maximum is $3 \cdot 3 = 9$
π― AMC-Style Worked Example
Problem: Find the minimum value of $\frac{x^2 + y^2}{xy}$ for positive real numbers $x, y$.
Solution:
Simplify: $\frac{x^2 + y^2}{xy} = \frac{x}{y} + \frac{y}{x}$
Apply AM-GM: $\frac{\frac{x}{y} + \frac{y}{x}}{2} \geq \sqrt{\frac{x}{y} \cdot \frac{y}{x}} = 1$
Solve: $\frac{x}{y} + \frac{y}{x} \geq 2$
Equality condition: When $\frac{x}{y} = \frac{y}{x}$ β $x = y$
Verify: When $x = y$, we get $\frac{x^2 + x^2}{x^2} = 2$ β
Answer: Minimum value is 2, achieved when $x = y$
π Advanced Techniques
Technique 1: Homogenization
Make expressions homogeneous by introducing appropriate factors.
Technique 2: Substitution
Use clever substitutions to simplify expressions.
Technique 3: Symmetric Sums
Use symmetric sum identities for complex expressions.
Example: Find minimum of $a^2 + b^2 + c^2$ subject to $a + b + c = 1$
Solution:
- Use identity: $a^2 + b^2 + c^2 = (a+b+c)^2 - 2(ab+bc+ca)$
- Substitute: $a^2 + b^2 + c^2 = 1 - 2(ab+bc+ca)$
- Minimize: Need to maximize $ab+bc+ca$
- AM-GM: $ab+bc+ca \leq \frac{(a+b+c)^2}{3} = \frac{1}{3}$
- Answer: Minimum is $1 - 2 \cdot \frac{1}{3} = \frac{1}{3}$
β οΈ Common Pitfalls
Pitfall: Wrong equality conditions
Fix: Always check when equality holds in your inequality.
Pitfall: Forgetting constraints
Fix: Make sure your solution satisfies all given constraints.
Pitfall: Wrong application of Cauchy-Schwarz
Fix: Ensure you’re applying it to the right vectors.
Pitfall: Not checking if minimum/maximum exists
Fix: Verify that your critical point actually gives the desired extremum.
π Quick Reference
AM-GM Inequality
For positive real numbers $a_1, a_2, \ldots, a_n$: $$\frac{a_1 + a_2 + \cdots + a_n}{n} \geq \sqrt[n]{a_1 a_2 \cdots a_n}$$ Equality when all numbers are equal.
Cauchy-Schwarz Inequality
$$(\sum_{i=1}^n a_i b_i)^2 \leq (\sum_{i=1}^n a_i^2)(\sum_{i=1}^n b_i^2)$$ Equality when vectors are proportional.
Common Applications
- Minimum of sum: Use AM-GM on individual terms
- Maximum of dot product: Use Cauchy-Schwarz
- Constrained optimization: Combine with substitution
Equality Conditions
- AM-GM: All terms equal
- Cauchy-Schwarz: Vectors proportional
- Weighted AM-GM: Terms proportional to weights
Next: Problem Types Overview
Back to: Problem Types