๐ Logarithm Equations & Inequalities
Master logarithmic equation solving with domain awareness and systematic approaches.
๐ฏ Recognition Cues
Look for these patterns:
- Single logarithm: $\log_a x = b$
- Multiple logarithms: $\log x + \log(x+1) = 2$
- Logarithmic inequalities: $\log_2(x-1) > 3$
- Change of base: $\log_3 7 = \frac{\log 7}{\log 3}$
- Exponential-logarithmic: $2^x = 5$
๐ Template Solution (4 Steps)
- Check domain - All arguments must be positive
- Simplify - Use logarithm laws to combine terms
- Solve - Convert to exponential form or use properties
- Verify - Check solutions satisfy domain and original equation
๐ Common Patterns
Pattern 1: Single Logarithm
Template: $\log_a x = b$ โ $x = a^b$
Example: Solve $\log_2(x-1) = 3$
Solution:
- Domain: $x - 1 > 0$ โ $x > 1$
- Convert: $x - 1 = 2^3 = 8$
- Solve: $x = 9$
- Check: $x = 9 > 1$ โ and $\log_2(9-1) = \log_2 8 = 3$ โ
Pattern 2: Multiple Logarithms
Template: Use laws to combine: $\log_a x + \log_a y = \log_a(xy)$
Example: Solve $\log x + \log(x+1) = 2$
Solution:
- Domain: $x > 0$ and $x + 1 > 0$ โ $x > 0$
- Combine: $\log(x(x+1)) = 2$
- Convert: $x(x+1) = 10^2 = 100$
- Solve: $x^2 + x - 100 = 0$ โ $x = \frac{-1 \pm \sqrt{401}}{2}$
- Check domain: Only $x = \frac{-1 + \sqrt{401}}{2} > 0$ โ
Pattern 3: Logarithmic Inequalities
Template: Consider base: if $a > 1$, direction preserved; if $0 < a < 1$, direction reversed
Example: Solve $\log_2(x-1) > 3$
Solution:
- Domain: $x - 1 > 0$ โ $x > 1$
- Base 2 > 1: Direction preserved
- Convert: $x - 1 > 2^3 = 8$
- Solve: $x > 9$
- Combine: $x > 9$ (satisfies domain)
Pattern 4: Change of Base
Template: $\log_a x = \frac{\log_b x}{\log_b a}$
Example: Evaluate $\log_3 7$ using base 10
Solution:
- $\log_3 7 = \frac{\log 7}{\log 3} \approx \frac{0.8451}{0.4771} \approx 1.771$
๐ฏ AMC-Style Worked Example
Problem: Solve $\log_2(x^2 - 4) - \log_2(x-2) = 3$ for $x$.
Solution:
Domain check: $x^2 - 4 > 0$ and $x - 2 > 0$
- $x^2 - 4 > 0$ โ $x < -2$ or $x > 2$
- $x - 2 > 0$ โ $x > 2$
- Combined: $x > 2$
Use quotient law: $\log_2\left(\frac{x^2-4}{x-2}\right) = 3$
Simplify fraction: $\frac{x^2-4}{x-2} = \frac{(x-2)(x+2)}{x-2} = x+2$ (for $x \neq 2$)
Convert: $x + 2 = 2^3 = 8$
Solve: $x = 6$
Check: $x = 6 > 2$ โ and $\log_2(36-4) - \log_2(6-2) = \log_2 32 - \log_2 4 = 5 - 2 = 3$ โ
Answer: $x = 6$
โ ๏ธ Common Pitfalls
Pitfall: Forgetting domain restrictions
Fix: Always check that all logarithm arguments are positive.
Pitfall: Wrong direction in inequalities
Fix: If base $0 < a < 1$, reverse the inequality direction.
Pitfall: Extraneous solutions
Fix: Check all solutions in the original equation, especially after squaring.
Pitfall: Confusing $\log_a(xy)$ and $\log_a x \cdot \log_a y$
Fix: $\log_a(xy) = \log_a x + \log_a y$ (addition, not multiplication).
๐ Quick Reference
Logarithm Laws
- $\log_a(xy) = \log_a x + \log_a y$
- $\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y$
- $\log_a(x^y) = y \log_a x$
- $\log_a x = \frac{\log_b x}{\log_b a}$ (change of base)
Domain Restrictions
- $\log_a x$ requires $x > 0$ and $a > 0, a \neq 1$
- $\log_a(f(x))$ requires $f(x) > 0$
Inequality Rules
- If $a > 1$: $\log_a x > \log_a y$ โ $x > y$
- If $0 < a < 1$: $\log_a x > \log_a y$ โ $x < y$
Common Values
- $\log 2 \approx 0.3010$
- $\log 3 \approx 0.4771$
- $\log 5 \approx 0.6990$
- $\ln 2 \approx 0.693$
Next: Polynomial Roots & Vieta
Back to: Problem Types