🎯 Polynomial Roots & Vieta
Master polynomial root problems using Vieta’s formulas and symmetric sum techniques.
🎯 Recognition Cues
Look for these patterns:
- Root relationships: “sum of roots”, “product of roots”
- Symmetric expressions: $r_1^2 + r_2^2$, $r_1^3 + r_2^3$
- Parameter problems: “find $k$ such that…”
- Polynomial construction: “find polynomial with roots…”
- Coefficient relationships: “if $ax^2 + bx + c = 0$ has roots…”
📋 Template Solution (4 Steps)
- Identify the polynomial and its roots
- Apply Vieta’s formulas to find basic relationships
- Use identities to find desired expressions
- Check your answer makes sense
🔍 Common Patterns
Pattern 1: Basic Vieta’s Application
Template: For $ax^2 + bx + c = 0$ with roots $r_1, r_2$:
- Sum: $r_1 + r_2 = -\frac{b}{a}$
- Product: $r_1 r_2 = \frac{c}{a}$
Example: If $x^2 - 5x + 6 = 0$ has roots $r$ and $s$, find $r^2 + s^2$
Solution:
- Vieta’s: $r + s = 5$, $rs = 6$
- Identity: $r^2 + s^2 = (r+s)^2 - 2rs$
- Substitute: $r^2 + s^2 = 5^2 - 2(6) = 25 - 12 = 13$
Pattern 2: Higher Degree Polynomials
Template: For $ax^3 + bx^2 + cx + d = 0$ with roots $r_1, r_2, r_3$:
- Sum: $r_1 + r_2 + r_3 = -\frac{b}{a}$
- Sum of products: $r_1 r_2 + r_1 r_3 + r_2 r_3 = \frac{c}{a}$
- Product: $r_1 r_2 r_3 = -\frac{d}{a}$
Example: If $x^3 - 6x^2 + 11x - 6 = 0$ has roots $a, b, c$, find $a^2 + b^2 + c^2$
Solution:
- Vieta’s: $a + b + c = 6$, $ab + ac + bc = 11$, $abc = 6$
- Identity: $a^2 + b^2 + c^2 = (a+b+c)^2 - 2(ab+ac+bc)$
- Substitute: $a^2 + b^2 + c^2 = 6^2 - 2(11) = 36 - 22 = 14$
Pattern 3: Parameter Problems
Template: Use Vieta’s to find parameter values
Example: Find $k$ such that $x^2 + kx + 12 = 0$ has roots whose sum is 7
Solution:
- Vieta’s: Sum of roots = $-k = 7$
- Solve: $k = -7$
- Check: Product = $12$ ✓
Pattern 4: Symmetric Sums
Template: Use identities to express higher powers in terms of basic sums
Example: If $r$ and $s$ are roots of $x^2 - 3x + 1 = 0$, find $r^3 + s^3$
Solution:
- Vieta’s: $r + s = 3$, $rs = 1$
- Identity: $r^3 + s^3 = (r+s)^3 - 3rs(r+s)$
- Substitute: $r^3 + s^3 = 3^3 - 3(1)(3) = 27 - 9 = 18$
🎯 AMC-Style Worked Example
Problem: If $x^3 - 4x^2 + 5x - 2 = 0$ has roots $a, b, c$, find the value of $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$.
Solution:
Vieta’s formulas:
- $a + b + c = 4$
- $ab + ac + bc = 5$
- $abc = 2$
Find common denominator:
- $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc}$
Substitute known values:
- $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{5}{2}$
Answer: $\frac{5}{2}$
📊 Common Identities
Quadratic Identities
- $r_1^2 + r_2^2 = (r_1 + r_2)^2 - 2r_1 r_2$
- $r_1^3 + r_2^3 = (r_1 + r_2)^3 - 3r_1 r_2(r_1 + r_2)$
- $r_1^4 + r_2^4 = (r_1^2 + r_2^2)^2 - 2(r_1 r_2)^2$
Cubic Identities
- $r_1^2 + r_2^2 + r_3^2 = (r_1 + r_2 + r_3)^2 - 2(r_1 r_2 + r_1 r_3 + r_2 r_3)$
- $r_1^3 + r_2^3 + r_3^3 = (r_1 + r_2 + r_3)^3 - 3(r_1 + r_2 + r_3)(r_1 r_2 + r_1 r_3 + r_2 r_3) + 3r_1 r_2 r_3$
Reciprocal Sums
- $\frac{1}{r_1} + \frac{1}{r_2} = \frac{r_1 + r_2}{r_1 r_2}$
- $\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} = \frac{r_1 r_2 + r_1 r_3 + r_2 r_3}{r_1 r_2 r_3}$
⚠️ Common Pitfalls
Pitfall: Wrong signs in Vieta’s formulas
Fix: Remember the negative sign: sum of roots = $-\frac{b}{a}$.
Pitfall: Forgetting to check if roots exist
Fix: Ensure discriminant $\geq 0$ for real roots.
Pitfall: Wrong identity application
Fix: Double-check your algebraic manipulations.
Pitfall: Confusing sum and product
Fix: Sum = $-\frac{b}{a}$, Product = $\frac{c}{a}$ for $ax^2 + bx + c = 0$.
📋 Quick Reference
Vieta’s Formulas (Quadratic)
For $ax^2 + bx + c = 0$ with roots $r_1, r_2$:
- Sum: $r_1 + r_2 = -\frac{b}{a}$
- Product: $r_1 r_2 = \frac{c}{a}$
Vieta’s Formulas (Cubic)
For $ax^3 + bx^2 + cx + d = 0$ with roots $r_1, r_2, r_3$:
- Sum: $r_1 + r_2 + r_3 = -\frac{b}{a}$
- Sum of products: $r_1 r_2 + r_1 r_3 + r_2 r_3 = \frac{c}{a}$
- Product: $r_1 r_2 r_3 = -\frac{d}{a}$
Essential Identities
- $r_1^2 + r_2^2 = (r_1 + r_2)^2 - 2r_1 r_2$
- $r_1^3 + r_2^3 = (r_1 + r_2)^3 - 3r_1 r_2(r_1 + r_2)$
- $\frac{1}{r_1} + \frac{1}{r_2} = \frac{r_1 + r_2}{r_1 r_2}$
Next: Inequalities AM-GM & Cauchy
Back to: Problem Types