๐ Solving Trig Equations
Master the art of solving trigonometric equations with pattern recognition and systematic approaches.
๐ฏ Recognition Cues
Look for these patterns:
- Single trig function: $\sin x = a$, $\cos x = b$, $\tan x = c$
- Multiple trig functions: $\sin x + \cos x = 1$
- Squared functions: $\sin^2 x + \cos^2 x = 1$
- Angle relationships: $\sin(2x) = \cos(x)$
- Inverse functions: $\arcsin x = \frac{\pi}{4}$
๐ Template Solution (5 Steps)
- Isolate the trigonometric function
- Identify the reference angle
- Determine quadrants based on sign
- Find all solutions in given interval
- Check for extraneous solutions
๐ Common Patterns
Pattern 1: Single Function
Template: $f(x) = a$ where $f$ is $\sin$, $\cos$, or $\tan$
Example: Solve $\sin x = \frac{1}{2}$ for $0 \leq x < 2\pi$
Solution:
- Reference angle: $\arcsin\frac{1}{2} = \frac{\pi}{6}$
- Quadrants: Sine is positive in I and II
- Solutions: $x = \frac{\pi}{6}$ and $x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$
Pattern 2: Squared Functions
Template: Use Pythagorean identity $\sin^2 x + \cos^2 x = 1$
Example: Solve $\sin^2 x = \cos^2 x$ for $0 \leq x < 2\pi$
Solution:
- Use identity: $\sin^2 x = 1 - \sin^2 x$
- Solve: $2\sin^2 x = 1$ โ $\sin^2 x = \frac{1}{2}$ โ $\sin x = \pm\frac{\sqrt{2}}{2}$
- Reference angle: $\frac{\pi}{4}$
- Solutions: $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$
Pattern 3: Multiple Functions
Template: Use identities to convert to single function
Example: Solve $\sin x + \cos x = 1$ for $0 \leq x < 2\pi$
Solution:
- Square both sides: $(\sin x + \cos x)^2 = 1$
- Expand: $\sin^2 x + 2\sin x \cos x + \cos^2 x = 1$
- Use identities: $1 + \sin(2x) = 1$ โ $\sin(2x) = 0$
- Solve: $2x = 0, \pi, 2\pi, 3\pi, \ldots$ โ $x = 0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$
- Check: Only $x = 0$ and $x = \frac{\pi}{2}$ satisfy original equation
๐ฏ AMC-Style Worked Example
Problem: Find all real solutions to $\sin(2x) = \cos(x)$ in the interval $[0, 2\pi)$.
Solution:
- Use double angle formula: $\sin(2x) = 2\sin x \cos x$
- Substitute: $2\sin x \cos x = \cos x$
- Factor: $\cos x(2\sin x - 1) = 0$
- Solve each factor:
- $\cos x = 0$ โ $x = \frac{\pi}{2}, \frac{3\pi}{2}$
- $2\sin x - 1 = 0$ โ $\sin x = \frac{1}{2}$ โ $x = \frac{\pi}{6}, \frac{5\pi}{6}$
- All solutions: $x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$
โ ๏ธ Common Pitfalls
Pitfall: Forgetting to check all quadrants
Fix: Always consider both positive and negative cases for $\sin$ and $\cos$.
Pitfall: Extraneous solutions from squaring
Fix: Check all solutions in the original equation.
Pitfall: Wrong period for multiple angles
Fix: For $\sin(kx) = a$, period is $\frac{2\pi}{k}$.
Pitfall: Domain restrictions on inverse functions
Fix: Remember ranges: $\arcsin \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, $\arccos \in [0, \pi]$.
๐ Quick Reference
Special Angle Values
| Angle | $\sin$ | $\cos$ | $\tan$ |
|---|---|---|---|
| $0ยฐ$ | $0$ | $1$ | $0$ |
| $30ยฐ$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{3}}{3}$ |
| $45ยฐ$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | $1$ |
| $60ยฐ$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\sqrt{3}$ |
| $90ยฐ$ | $1$ | $0$ | undefined |
Common Identities
- $\sin^2 x + \cos^2 x = 1$
- $\sin(2x) = 2\sin x \cos x$
- $\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$
Solution Intervals
- For $[0, 2\pi)$: Check all quadrants
- For $[0, \pi)$: Check quadrants I and II only
- For $(-\pi, \pi]$: Check all four quadrants
Next: Logarithm Equations & Inequalities
Back to: Problem Types