๐Ÿ“ Notation Cheatsheet

Quick reference for essential mathematical notation and symbols used in AMC precalculus problems.

๐Ÿ”ข Basic Notation

SymbolMeaningUsage Example
$\mathbb{R}$Real numbersDomain: $x \in \mathbb{R}$
$\mathbb{C}$Complex numbers$z \in \mathbb{C}$
$\mathbb{Z}$Integers$n \in \mathbb{Z}$
$\mathbb{N}$Natural numbers$k \in \mathbb{N}$
$[a,b]$Closed interval$x \in [0,1]$
$(a,b)$Open interval$x \in (0,1)$
$[a,b)$Half-open interval$x \in [0,1)$
$\infty$Infinity$\lim_{x \to \infty}$

๐Ÿ”„ Function Notation

NotationMeaningUsage
$f(x)$Function value$f(2) = 5$
$f^{-1}(x)$Inverse function$f^{-1}(5) = 2$
$\frac{1}{f(x)}$Reciprocal$\frac{1}{f(x)} \neq f^{-1}(x)$
$f \circ g$Composition$(f \circ g)(x) = f(g(x))$
$f’(x)$Derivative$f’(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$
$\int f(x) , dx$Antiderivative$\int x^2 , dx = \frac{x^3}{3} + C$

๐Ÿ“ Domain and Range

Function TypeDomainRangeNotes
$f(x) = x^2$$(-\infty, \infty)$$[0, \infty)$Non-negative
$f(x) = \sqrt{x}$$[0, \infty)$$[0, \infty)$Non-negative
$f(x) = \frac{1}{x}$$(-\infty, 0) \cup (0, \infty)$$(-\infty, 0) \cup (0, \infty)$Exclude 0
$f(x) = \log_a x$$(0, \infty)$$(-\infty, \infty)$$a > 0, a \neq 1$
$f(x) = a^x$$(-\infty, \infty)$$(0, \infty)$$a > 0, a \neq 1$

๐Ÿ“Š Trigonometric Notation

SymbolFunctionDomainRangeNotes
$\sin x$Sine$(-\infty, \infty)$$[-1, 1]$Periodic: $2\pi$
$\cos x$Cosine$(-\infty, \infty)$$[-1, 1]$Periodic: $2\pi$
$\tan x$Tangent$x \neq \frac{\pi}{2} + n\pi$$(-\infty, \infty)$Periodic: $\pi$
$\arcsin x$Inverse sine$[-1, 1]$$[-\frac{\pi}{2}, \frac{\pi}{2}]$Principal value
$\arccos x$Inverse cosine$[-1, 1]$$[0, \pi]$Principal value
$\arctan x$Inverse tangent$(-\infty, \infty)$$(-\frac{\pi}{2}, \frac{\pi}{2})$Principal value

๐Ÿ”ข Logarithmic Notation

ExpressionMeaningExample
$\log x$Base 10 logarithm$\log 100 = 2$
$\ln x$Natural logarithm (base $e$)$\ln e = 1$
$\log_a x$Base $a$ logarithm$\log_2 8 = 3$
$e^x$Exponential function$e^0 = 1$
$a^x$General exponential$2^3 = 8$

๐ŸŒ€ Complex Number Notation

NotationMeaningExample
$z = a + bi$Rectangular form$z = 3 + 4i$
$z = re^{i\theta}$Polar form$z = 5e^{i\pi/4}$
$z$
$\arg(z)$Argument (angle)$\arg(1 + i) = \frac{\pi}{4}$
$\overline{z}$Complex conjugate$\overline{3 + 4i} = 3 - 4i$
$\Re(z)$Real part$\Re(3 + 4i) = 3$
$\Im(z)$Imaginary part$\Im(3 + 4i) = 4$

๐Ÿ“ˆ Sequence and Series Notation

SymbolMeaningExample
$a_n$$n$-th term$a_1, a_2, a_3, \ldots$
$S_n$Partial sum$S_n = a_1 + a_2 + \cdots + a_n$
$\sum_{k=1}^n a_k$Summation$\sum_{k=1}^n k = \frac{n(n+1)}{2}$
$\lim_{n \to \infty} a_n$Limit of sequence$\lim_{n \to \infty} \frac{1}{n} = 0$
$\sum_{k=1}^{\infty} a_k$Infinite series$\sum_{k=1}^{\infty} \frac{1}{2^k} = 1$

โšก Common Patterns

Pitfall: Inverse vs Reciprocal

  • $f^{-1}(x) \neq \frac{1}{f(x)}$ (inverse function vs reciprocal)
  • Example: If $f(x) = 2x + 1$, then $f^{-1}(x) = \frac{x-1}{2}$, but $\frac{1}{f(x)} = \frac{1}{2x+1}$

Pro Move: Function Composition Order

  • $(f \circ g)(x) = f(g(x))$ (apply $g$ first, then $f$)
  • $(g \circ f)(x) = g(f(x))$ (apply $f$ first, then $g$)

Recognition: Domain Restrictions

  • Square roots: radicand $\geq 0$
  • Logarithms: argument $> 0$
  • Fractions: denominator $\neq 0$
  • Even roots: radicand $\geq 0$

Next: Explore the Concept Atlas for quick topic primers.