π― Binomial Theorem & Series
Master binomial expansions, coefficient calculations, and estimation techniques. Essential for AMC 12 and appears in AMC 10.
π― Key Ideas
Binomial Theorem: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$
Binomial Coefficients: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ count combinations
Applications: Probability, approximation, coefficient problems
π Binomial Theorem
Statement
For any real numbers $a, b$ and non-negative integer $n$: $$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
Special Cases
- $(1+x)^n$: $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$
- $(x+y)^n$: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$
Example: Expand $(2x-3)^4$
Solution:
- $(2x-3)^4 = \sum_{k=0}^4 \binom{4}{k} (2x)^{4-k} (-3)^k$
- $= \binom{4}{0}(2x)^4 + \binom{4}{1}(2x)^3(-3) + \binom{4}{2}(2x)^2(-3)^2 + \binom{4}{3}(2x)(-3)^3 + \binom{4}{4}(-3)^4$
- $= 1 \cdot 16x^4 + 4 \cdot 8x^3(-3) + 6 \cdot 4x^2(9) + 4 \cdot 2x(-27) + 1 \cdot 81$
- $= 16x^4 - 96x^3 + 216x^2 - 216x + 81$
π’ Binomial Coefficients
Definition
$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$$
Properties
- Symmetry: $\binom{n}{k} = \binom{n}{n-k}$
- Pascal’s Identity: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- Sum: $\sum_{k=0}^n \binom{n}{k} = 2^n$
Example: Calculate $\binom{7}{3}$
Solution:
- $\binom{7}{3} = \frac{7!}{3!(7-3)!} = \frac{7!}{3!4!} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = \frac{210}{6} = 35$
π Pascal’s Triangle
Construction
- Row $n$ contains coefficients for $(a+b)^n$
- Each entry is sum of two entries above it
- First and last entries in each row are 1
First Few Rows
n=0: 1
n=1: 1 1
n=2: 1 2 1
n=3: 1 3 3 1
n=4: 1 4 6 4 1
Example: Use Pascal’s triangle to expand $(x+y)^3$
Solution:
- Row 3: $1, 3, 3, 1$
- $(x+y)^3 = 1x^3 + 3x^2y + 3xy^2 + 1y^3 = x^3 + 3x^2y + 3xy^2 + y^3$
π― Coefficient Problems
Finding Specific Coefficients
To find coefficient of $x^k$ in $(ax+b)^n$:
- General term: $\binom{n}{r} (ax)^{n-r} b^r$
- Exponent of $x$: $n-r = k$, so $r = n-k$
- Coefficient: $\binom{n}{n-k} a^{n-(n-k)} b^{n-k} = \binom{n}{k} a^k b^{n-k}$
Example: Find coefficient of $x^3$ in $(2x+1)^5$
Solution:
- General term: $\binom{5}{r} (2x)^{5-r} (1)^r$
- Exponent: $5-r = 3$, so $r = 2$
- Coefficient: $\binom{5}{2} \cdot 2^2 \cdot 1^3 = 10 \cdot 4 \cdot 1 = 40$
π Sums of Binomial Coefficients
Common Sums
- All coefficients: $\sum_{k=0}^n \binom{n}{k} = 2^n$
- Even coefficients: $\sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} = 2^{n-1}$ (for $n \geq 1$)
- Odd coefficients: $\sum_{k=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2k+1} = 2^{n-1}$ (for $n \geq 1$)
Example: Find $\sum_{k=0}^5 \binom{5}{k}$
Solution:
- $\sum_{k=0}^5 \binom{5}{k} = 2^5 = 32$
π Binomial Series (Infinite)
For $|x| < 1$:
$$(1+x)^\alpha = \sum_{k=0}^{\infty} \binom{\alpha}{k} x^k$$
where $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$ for any real $\alpha$.
Special Cases
- $\alpha = -1$: $\frac{1}{1+x} = 1 - x + x^2 - x^3 + \cdots$
- $\alpha = \frac{1}{2}$: $\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$
π― AMC-Style Worked Example
Problem: Find the coefficient of $x^4$ in the expansion of $(1+2x+3x^2)^6$.
Solution:
- Rewrite: $(1+2x+3x^2)^6 = (1+x(2+3x))^6$
- Apply binomial theorem: $\sum_{k=0}^6 \binom{6}{k} 1^{6-k} (x(2+3x))^k$
- Focus on $x^4$ terms: Need $k$ such that $(x(2+3x))^k$ contributes $x^4$
- Analyze each $k$:
- $k=0$: No $x$ terms
- $k=1$: $x(2+3x) = 2x + 3x^2$ β no $x^4$
- $k=2$: $(x(2+3x))^2 = x^2(2+3x)^2 = x^2(4+12x+9x^2) = 4x^2+12x^3+9x^4$ β coefficient $9$
- $k=3$: $(x(2+3x))^3 = x^3(2+3x)^3$ β highest power is $x^6$ β no $x^4$
- $k \geq 4$: Higher powers β no $x^4$
- Calculate: For $k=2$, coefficient is $\binom{6}{2} \cdot 9 = 15 \cdot 9 = 135$
Answer: 135
π Common Traps & Fixes
Trap: Wrong exponent calculation
Fix: In $(ax+b)^n$, the exponent of $x$ in term $\binom{n}{r} (ax)^{n-r} b^r$ is $n-r$.
Trap: Forgetting to multiply by coefficient
Fix: The coefficient includes both the binomial coefficient and the powers of $a$ and $b$.
Trap: Confusing finite and infinite series
Fix: Binomial theorem is for finite $n$; binomial series is for infinite expansion with $|x| < 1$.
Trap: Wrong range of convergence
Fix: Infinite binomial series converges only when $|x| < 1$.
π Quick Reference
Binomial Theorem
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$
Binomial Coefficients
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
Common Sums
- $\sum_{k=0}^n \binom{n}{k} = 2^n$
- $\sum_{k=0}^n \binom{n}{k} x^k = (1+x)^n$
Pascal’s Triangle Properties
- $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$
- $\binom{n}{k} = \binom{n}{n-k}$
Prev: Sequences & Series
Next: Coordinate Geometry
Back to: Topic Guides