๐ Coordinate Geometry
Master coordinate geometry fundamentals including lines, circles, and basic conic sections. Essential for both AMC 10 and AMC 12.
๐ฏ Key Ideas
Distance Formula: $d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
Circle Equation: $(x-h)^2 + (y-k)^2 = r^2$ with center $(h,k)$ and radius $r$
Line Equations: Various forms for different applications
๐ Distance and Midpoint
Distance Formula
Distance between points $P_1(x_1, y_1)$ and $P_2(x_2, y_2)$: $$d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$$
Midpoint Formula
Midpoint of segment from $P_1(x_1, y_1)$ to $P_2(x_2, y_2)$: $$\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$$
Example: Find distance and midpoint between $(2,3)$ and $(-1,7)$
Solution:
- Distance: $d = \sqrt{(-1-2)^2 + (7-3)^2} = \sqrt{(-3)^2 + 4^2} = \sqrt{9+16} = 5$
- Midpoint: $\left(\frac{2+(-1)}{2}, \frac{3+7}{2}\right) = \left(\frac{1}{2}, 5\right)$
๐ Lines
Slope Formula
Slope of line through points $(x_1, y_1)$ and $(x_2, y_2)$: $$m = \frac{y_2-y_1}{x_2-x_1}$$
Line Equations
- Point-slope: $y - y_1 = m(x - x_1)$
- Slope-intercept: $y = mx + b$
- Standard form: $Ax + By + C = 0$
- Two-point form: $\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}$
Parallel and Perpendicular Lines
- Parallel: Same slope ($m_1 = m_2$)
- Perpendicular: Negative reciprocal slopes ($m_1 \cdot m_2 = -1$)
Example: Find equation of line through $(1,2)$ perpendicular to $y = 3x + 1$
Solution:
- Slope of given line: $m_1 = 3$
- Slope of perpendicular: $m_2 = -\frac{1}{3}$
- Point-slope form: $y - 2 = -\frac{1}{3}(x - 1)$
- Simplify: $y = -\frac{1}{3}x + \frac{1}{3} + 2 = -\frac{1}{3}x + \frac{7}{3}$
โญ Circles
Standard Form
Circle with center $(h,k)$ and radius $r$: $$(x-h)^2 + (y-k)^2 = r^2$$
General Form
$$x^2 + y^2 + Dx + Ey + F = 0$$
To convert to standard form, complete the square.
Example: Find center and radius of $x^2 + y^2 - 4x + 6y - 3 = 0$
Solution:
- Group terms: $(x^2 - 4x) + (y^2 + 6y) = 3$
- Complete squares:
- $x^2 - 4x = (x-2)^2 - 4$
- $y^2 + 6y = (y+3)^2 - 9$
- Substitute: $(x-2)^2 - 4 + (y+3)^2 - 9 = 3$
- Simplify: $(x-2)^2 + (y+3)^2 = 16$
- Center: $(2,-3)$, Radius: $4$
๐บ Area Formulas
Triangle Area
Area of triangle with vertices $(x_1,y_1)$, $(x_2,y_2)$, $(x_3,y_3)$: $$A = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|$$
Shoelace Formula
$$A = \frac{1}{2}\left|\sum_{i=1}^n (x_i y_{i+1} - x_{i+1} y_i)\right|$$ where $(x_{n+1}, y_{n+1}) = (x_1, y_1)$.
Example: Find area of triangle with vertices $(0,0)$, $(3,4)$, $(6,0)$
Solution:
- $A = \frac{1}{2}|0(4-0) + 3(0-0) + 6(0-4)| = \frac{1}{2}|0 + 0 - 24| = \frac{1}{2} \cdot 24 = 12$
๐ฏ Basic Conic Sections (AMC 12 Light)
Parabola
- Standard form: $y = ax^2 + bx + c$ or $x = ay^2 + by + c$
- Vertex form: $y = a(x-h)^2 + k$ with vertex $(h,k)$
Ellipse
- Standard form: $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$
- Center: $(h,k)$
- Major axis: $2a$ (longer axis)
- Minor axis: $2b$ (shorter axis)
Hyperbola
- Standard form: $\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$
- Center: $(h,k)$
- Asymptotes: $y - k = \pm\frac{b}{a}(x - h)$
Example: Identify conic section $x^2 + 4y^2 - 2x + 8y + 1 = 0$
Solution:
- Complete squares:
- $x^2 - 2x = (x-1)^2 - 1$
- $4y^2 + 8y = 4(y^2 + 2y) = 4((y+1)^2 - 1) = 4(y+1)^2 - 4$
- Substitute: $(x-1)^2 - 1 + 4(y+1)^2 - 4 + 1 = 0$
- Simplify: $(x-1)^2 + 4(y+1)^2 = 4$
- Divide by 4: $\frac{(x-1)^2}{4} + \frac{(y+1)^2}{1} = 1$
- Answer: Ellipse with center $(1,-1)$, major axis 4, minor axis 2
๐ฏ AMC-Style Worked Example
Problem: Find the area of the triangle formed by the intersection of the lines $y = 2x + 1$, $y = -x + 4$, and $y = 3$.
Solution:
- Find intersection points:
- Line 1 & 2: $2x + 1 = -x + 4$ โ $3x = 3$ โ $x = 1$ โ $y = 3$ โ $(1,3)$
- Line 1 & 3: $2x + 1 = 3$ โ $2x = 2$ โ $x = 1$ โ $(1,3)$
- Line 2 & 3: $-x + 4 = 3$ โ $x = 1$ โ $(1,3)$
- Wait, all three lines pass through $(1,3)$!
- This means the three lines are concurrent, not forming a triangle
- Answer: Area = 0 (no triangle formed)
๐ Common Traps & Fixes
Trap: Wrong slope calculation
Fix: $m = \frac{y_2-y_1}{x_2-x_1}$, not $\frac{x_2-x_1}{y_2-y_1}$.
Trap: Forgetting absolute value in area formula
Fix: Area is always positive, so use absolute value in triangle area formula.
Trap: Wrong circle center/radius
Fix: In $(x-h)^2 + (y-k)^2 = r^2$, center is $(h,k)$, not $(-h,-k)$.
Trap: Confusing conic section types
Fix: Check coefficients: $x^2$ and $y^2$ both positive = ellipse; opposite signs = hyperbola; one missing = parabola.
๐ Quick Reference
Distance and Midpoint
- Distance: $d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2}$
- Midpoint: $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
Lines
- Slope: $m = \frac{y_2-y_1}{x_2-x_1}$
- Point-slope: $y - y_1 = m(x - x_1)$
- Perpendicular: $m_1 \cdot m_2 = -1$
Circles
- Standard: $(x-h)^2 + (y-k)^2 = r^2$
- Center: $(h,k)$, Radius: $r$
Area
- Triangle: $A = \frac{1}{2}|x_1(y_2-y_3) + x_2(y_3-y_1) + x_3(y_1-y_2)|$
Prev: Binomial Theorem & Series
Next: Vectors (Light)
Back to: Topic Guides