πŸ”„ Functions & Transformations

Functions are the foundation of precalculus. Understanding domains, ranges, inverses, and transformations is essential for AMC success.

🎯 Key Ideas

Function Definition: A function $f$ maps each input $x$ to exactly one output $f(x)$. The domain is all valid inputs; the range is all possible outputs.

Transformations: Basic transformations shift, scale, or reflect graphs:

  • $f(x-h)$ shifts right by $h$ units
  • $f(x)+k$ shifts up by $k$ units
  • $af(x)$ scales vertically by factor $a$
  • $f(bx)$ scales horizontally by factor $\frac{1}{b}$

πŸ“Š Domain and Range

Common Function Types

FunctionDomainRangeNotes
$f(x) = x^2$$(-\infty, \infty)$$[0, \infty)$Non-negative
$f(x) = \sqrt{x}$$[0, \infty)$$[0, \infty)$Non-negative
$f(x) = \frac{1}{x}$$(-\infty, 0) \cup (0, \infty)$$(-\infty, 0) \cup (0, \infty)$Exclude 0
$f(x) = \log_a x$$(0, \infty)$$(-\infty, \infty)$$a > 0, a \neq 1$
$f(x) = a^x$$(-\infty, \infty)$$(0, \infty)$$a > 0, a \neq 1$

Pitfall: Domain Restrictions

  • Square roots: radicand $\geq 0$
  • Logarithms: argument $> 0$
  • Fractions: denominator $\neq 0$
  • Even roots: radicand $\geq 0$

πŸ”„ Inverse Functions

Definition: $f^{-1}(x)$ is the function that “undoes” $f(x)$, so $f^{-1}(f(x)) = x$.

Finding Inverses:

  1. Replace $f(x)$ with $y$
  2. Swap $x$ and $y$
  3. Solve for $y$
  4. Replace $y$ with $f^{-1}(x)$

Example: Find inverse of $f(x) = 2x + 3$

  • $y = 2x + 3$
  • $x = 2y + 3$ (swap)
  • $x - 3 = 2y$
  • $y = \frac{x-3}{2}$
  • $f^{-1}(x) = \frac{x-3}{2}$

Pitfall: Inverse vs Reciprocal

  • $f^{-1}(x) \neq \frac{1}{f(x)}$ (inverse function vs reciprocal)
  • Example: If $f(x) = 2x + 1$, then $f^{-1}(x) = \frac{x-1}{2}$, but $\frac{1}{f(x)} = \frac{1}{2x+1}$

πŸ”„ Function Composition

Definition: $(f \circ g)(x) = f(g(x))$ (apply $g$ first, then $f$)

Order Matters: $(f \circ g)(x) \neq (g \circ f)(x)$ in general

Example: If $f(x) = x^2$ and $g(x) = x + 1$, then:

  • $(f \circ g)(x) = f(x+1) = (x+1)^2$
  • $(g \circ f)(x) = g(x^2) = x^2 + 1$

πŸ“ˆ Transformations

Vertical Transformations

  • $f(x) + k$: shifts up $k$ units (down if $k < 0$)
  • $af(x)$: scales vertically by factor $a$ (reflects if $a < 0$)

Horizontal Transformations

  • $f(x-h)$: shifts right $h$ units (left if $h < 0$)
  • $f(bx)$: scales horizontally by factor $\frac{1}{b}$ (reflects if $b < 0$)

Pro Move: Combined Transformations

For $af(b(x-h)) + k$:

  1. Apply horizontal shift: $f(x-h)$
  2. Apply horizontal scaling: $f(b(x-h))$
  3. Apply vertical scaling: $af(b(x-h))$
  4. Apply vertical shift: $af(b(x-h)) + k$

🎯 AMC-Style Worked Example

Problem: If $f(x) = x^2 + 2x$ and $g(x) = x + 1$, find $(f \circ g)(x)$ and its domain.

Solution:

  1. $(f \circ g)(x) = f(g(x)) = f(x+1)$
  2. $f(x+1) = (x+1)^2 + 2(x+1)$
  3. $= x^2 + 2x + 1 + 2x + 2$
  4. $= x^2 + 4x + 3$

Domain: Since $g(x) = x + 1$ has domain $(-\infty, \infty)$ and $f(x) = x^2 + 2x$ has domain $(-\infty, \infty)$, the composition has domain $(-\infty, \infty)$.

Answer: $(f \circ g)(x) = x^2 + 4x + 3$ with domain $(-\infty, \infty)$

πŸ” Common Traps & Fixes

Trap: Confusing inverse and reciprocal

Fix: Remember $f^{-1}(x)$ undoes $f(x)$, while $\frac{1}{f(x)}$ is just the reciprocal.

Trap: Wrong order in composition

Fix: $(f \circ g)(x) = f(g(x))$ means apply $g$ first, then $f$.

Trap: Domain errors in composition

Fix: Check that outputs of inner function are valid inputs for outer function.

Trap: Forgetting horizontal scaling factor

Fix: $f(bx)$ scales horizontally by $\frac{1}{b}$, not $b$.


Prev: Reference Materials
Next: Equations & Inequalities
Back to: Topic Guides