๐ Trig Identities & Equations
Master trigonometric identities and equation solving techniques. These are essential for AMC 12 and appear frequently in AMC 10.
๐ฏ Key Ideas
Identities: Equations true for all valid inputs. Use them to simplify expressions and solve equations.
Addition Formulas: Relate trig functions of sum/difference of angles to functions of individual angles.
Double/Half Angles: Special cases of addition formulas for $2\theta$ and $\frac{\theta}{2}$.
๐ Fundamental Identities
Pythagorean Identities
- $\sin^2\theta + \cos^2\theta = 1$
- $1 + \tan^2\theta = \sec^2\theta$
- $1 + \cot^2\theta = \csc^2\theta$
Reciprocal Identities
- $\csc\theta = \frac{1}{\sin\theta}$
- $\sec\theta = \frac{1}{\cos\theta}$
- $\cot\theta = \frac{1}{\tan\theta}$
Quotient Identities
- $\tan\theta = \frac{\sin\theta}{\cos\theta}$
- $\cot\theta = \frac{\cos\theta}{\sin\theta}$
โ Addition Formulas
Sine Addition
- $\sin(A + B) = \sin A \cos B + \cos A \sin B$
- $\sin(A - B) = \sin A \cos B - \cos A \sin B$
Cosine Addition
- $\cos(A + B) = \cos A \cos B - \sin A \sin B$
- $\cos(A - B) = \cos A \cos B + \sin A \sin B$
Tangent Addition
- $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
- $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
Example: Find exact value of $\sin 15ยฐ$
Solution:
- $\sin 15ยฐ = \sin(45ยฐ - 30ยฐ) = \sin 45ยฐ \cos 30ยฐ - \cos 45ยฐ \sin 30ยฐ$
- $= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$
- $= \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4} = \frac{\sqrt{6} - \sqrt{2}}{4}$
๐ Double Angle Formulas
Sine Double Angle
- $\sin(2\theta) = 2\sin\theta \cos\theta$
Cosine Double Angle
- $\cos(2\theta) = \cos^2\theta - \sin^2\theta$
- $\cos(2\theta) = 2\cos^2\theta - 1$
- $\cos(2\theta) = 1 - 2\sin^2\theta$
Tangent Double Angle
- $\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$
Example: If $\sin\theta = \frac{3}{5}$ and $\theta$ is in Quadrant II, find $\sin(2\theta)$
Solution:
Find $\cos\theta$: Since $\sin^2\theta + \cos^2\theta = 1$:
- $\cos^2\theta = 1 - \sin^2\theta = 1 - \left(\frac{3}{5}\right)^2 = 1 - \frac{9}{25} = \frac{16}{25}$
- $\cos\theta = -\frac{4}{5}$ (negative in Quadrant II)
Apply double angle formula:
- $\sin(2\theta) = 2\sin\theta \cos\theta = 2 \cdot \frac{3}{5} \cdot \left(-\frac{4}{5}\right) = -\frac{24}{25}$
๐ Half Angle Formulas
Sine Half Angle
- $\sin\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 - \cos\theta}{2}}$
Cosine Half Angle
- $\cos\left(\frac{\theta}{2}\right) = \pm\sqrt{\frac{1 + \cos\theta}{2}}$
Tangent Half Angle
- $\tan\left(\frac{\theta}{2}\right) = \frac{1 - \cos\theta}{\sin\theta} = \frac{\sin\theta}{1 + \cos\theta}$
Pitfall: Sign Determination
The $\pm$ sign depends on the quadrant of $\frac{\theta}{2}$.
๐ Sum-to-Product Formulas
Sine Sum-to-Product
- $\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
- $\sin A - \sin B = 2\cos\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
Cosine Sum-to-Product
- $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
- $\cos A - \cos B = -2\sin\left(\frac{A+B}{2}\right)\sin\left(\frac{A-B}{2}\right)$
Example: Simplify $\sin 75ยฐ + \sin 15ยฐ$
Solution:
- $\sin 75ยฐ + \sin 15ยฐ = 2\sin\left(\frac{75ยฐ + 15ยฐ}{2}\right)\cos\left(\frac{75ยฐ - 15ยฐ}{2}\right)$
- $= 2\sin(45ยฐ)\cos(30ยฐ) = 2 \cdot \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{6}}{2}$
๐ Inverse Trig Functions
Principal Values
- $\arcsin x$: Range $[-\frac{\pi}{2}, \frac{\pi}{2}]$
- $\arccos x$: Range $[0, \pi]$
- $\arctan x$: Range $(-\frac{\pi}{2}, \frac{\pi}{2})$
Properties
- $\sin(\arcsin x) = x$ (for $x \in [-1,1]$)
- $\arcsin(\sin x) = x$ (for $x \in [-\frac{\pi}{2}, \frac{\pi}{2}]$)
- $\cos(\arccos x) = x$ (for $x \in [-1,1]$)
- $\arccos(\cos x) = x$ (for $x \in [0, \pi]$)
Example: Find $\arcsin\left(\sin\frac{5\pi}{6}\right)$
Solution:
- $\sin\frac{5\pi}{6} = \sin\frac{\pi}{6} = \frac{1}{2}$ (using reference angle)
- But $\frac{5\pi}{6}$ is not in the range of $\arcsin$ $[-\frac{\pi}{2}, \frac{\pi}{2}]$
- The angle in range with same sine is $\frac{\pi}{6}$
- Answer: $\frac{\pi}{6}$
๐ฏ AMC-Style Worked Example
Problem: Solve $\sin(2x) = \cos(x)$ for $0 \leq x < 2\pi$.
Solution:
- Use double angle formula: $\sin(2x) = 2\sin x \cos x$
- Substitute: $2\sin x \cos x = \cos x$
- Rearrange: $2\sin x \cos x - \cos x = 0$
- Factor: $\cos x(2\sin x - 1) = 0$
- Solve each factor:
- $\cos x = 0$ โ $x = \frac{\pi}{2}, \frac{3\pi}{2}$
- $2\sin x - 1 = 0$ โ $\sin x = \frac{1}{2}$ โ $x = \frac{\pi}{6}, \frac{5\pi}{6}$
- Check all solutions in range: All four values are in $[0, 2\pi)$
Answer: $x = \frac{\pi}{6}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{3\pi}{2}$
๐ Common Traps & Fixes
Trap: Wrong signs in half-angle formulas
Fix: Always determine the quadrant of $\frac{\theta}{2}$ to get the correct sign.
Trap: Domain restrictions on inverse trig
Fix: Remember the principal value ranges and check if your angle is in range.
Trap: Forgetting to check all solutions
Fix: When solving trig equations, always check the specified interval for all solutions.
Trap: Confusing sum-to-product and product-to-sum
Fix: Sum-to-product: $\sin A + \sin B = \ldots$; Product-to-sum: $\sin A \sin B = \ldots$
๐ Quick Reference
Essential Addition Formulas
- $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- $\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$
- $\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$
Double Angle Formulas
- $\sin(2\theta) = 2\sin\theta \cos\theta$
- $\cos(2\theta) = \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta$
- $\tan(2\theta) = \frac{2\tan\theta}{1 - \tan^2\theta}$
Sum-to-Product
- $\sin A + \sin B = 2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
- $\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)$
Prev: Trigonometry Basics
Next: Laws of Sines & Cosines
Back to: Topic Guides