📐 Trigonometry Basics
Master the unit circle, special angles, and right triangle relationships. These fundamentals are essential for all AMC trigonometry problems.
🎯 Key Ideas
Unit Circle: Circle with radius 1 centered at origin. Coordinates $(x,y)$ correspond to $(\cos\theta, \sin\theta)$.
SOH-CAH-TOA: For right triangles: $\sin = \frac{\text{opposite}}{\text{hypotenuse}}$, $\cos = \frac{\text{adjacent}}{\text{hypotenuse}}$, $\tan = \frac{\text{opposite}}{\text{adjacent}}$.
Special Angles: $30°$, $45°$, $60°$ (and their radian equivalents) have exact values that must be memorized.
⭕ Unit Circle
Basic Setup
- Center: $(0,0)$
- Radius: $1$
- Angle: Measured counterclockwise from positive $x$-axis
- Coordinates: $(\cos\theta, \sin\theta)$
Quadrant Signs
| Quadrant | $\sin\theta$ | $\cos\theta$ | $\tan\theta$ |
|---|---|---|---|
| I (0° to 90°) | + | + | + |
| II (90° to 180°) | + | - | - |
| III (180° to 270°) | - | - | + |
| IV (270° to 360°) | - | + | - |
📊 Special Angles
Exact Values (Memorize These!)
| Angle | Radians | $\sin$ | $\cos$ | $\tan$ |
|---|---|---|---|---|
| $0°$ | $0$ | $0$ | $1$ | $0$ |
| $30°$ | $\frac{\pi}{6}$ | $\frac{1}{2}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$ |
| $45°$ | $\frac{\pi}{4}$ | $\frac{\sqrt{2}}{2}$ | $\frac{\sqrt{2}}{2}$ | $1$ |
| $60°$ | $\frac{\pi}{3}$ | $\frac{\sqrt{3}}{2}$ | $\frac{1}{2}$ | $\sqrt{3}$ |
| $90°$ | $\frac{\pi}{2}$ | $1$ | $0$ | undefined |
Pro Move: Memory Tricks
- 30-60-90 triangle: Sides in ratio $1 : \sqrt{3} : 2$
- 45-45-90 triangle: Sides in ratio $1 : 1 : \sqrt{2}$
- Sine values: $\frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{\sqrt{3}}{2}$ (increasing)
- Cosine values: $\frac{\sqrt{3}}{2}, \frac{\sqrt{2}}{2}, \frac{1}{2}$ (decreasing)
🔺 Right Triangle Relationships
SOH-CAH-TOA
For right triangle with angle $\theta$:
- $\sin\theta = \frac{\text{opposite}}{\text{hypotenuse}}$
- $\cos\theta = \frac{\text{adjacent}}{\text{hypotenuse}}$
- $\tan\theta = \frac{\text{opposite}}{\text{adjacent}}$
Pythagorean Identity
- $\sin^2\theta + \cos^2\theta = 1$
- $\tan\theta = \frac{\sin\theta}{\cos\theta}$
Example: Find exact values of all trig functions for $30°$
Solution: Using 30-60-90 triangle with sides $1, \sqrt{3}, 2$:
- $\sin 30° = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{2}$
- $\cos 30° = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{\sqrt{3}}{2}$
- $\tan 30° = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$
🔄 Reference Angles
Definition: The acute angle between the terminal side and the $x$-axis.
Finding Reference Angles
- Quadrant I: Reference angle = angle
- Quadrant II: Reference angle = $180° - \text{angle}$
- Quadrant III: Reference angle = angle - $180°$
- Quadrant IV: Reference angle = $360° - \text{angle}$
Using Reference Angles
- Find the reference angle
- Determine the quadrant
- Apply appropriate signs
Example: Find $\sin 150°$
Solution:
- Reference angle: $180° - 150° = 30°$
- Quadrant: II (sine is positive)
- Value: $\sin 150° = \sin 30° = \frac{1}{2}$
📐 Cofunctions
Cofunction Identities:
- $\sin(90° - \theta) = \cos\theta$
- $\cos(90° - \theta) = \sin\theta$
- $\tan(90° - \theta) = \cot\theta$
Example: Find $\cos 60°$ using cofunctions
Solution:
- $\cos 60° = \sin(90° - 60°) = \sin 30° = \frac{1}{2}$
🎯 AMC-Style Worked Example
Problem: Find the exact value of $\sin 75°$.
Solution:
- Use angle addition: $75° = 45° + 30°$
- Apply sine addition formula: $\sin(45° + 30°) = \sin 45° \cos 30° + \cos 45° \sin 30°$
- Substitute known values:
- $\sin 45° = \frac{\sqrt{2}}{2}$, $\cos 30° = \frac{\sqrt{3}}{2}$
- $\cos 45° = \frac{\sqrt{2}}{2}$, $\sin 30° = \frac{1}{2}$
- Calculate: $\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6}}{4} + \frac{\sqrt{2}}{4} = \frac{\sqrt{6} + \sqrt{2}}{4}$
Answer: $\frac{\sqrt{6} + \sqrt{2}}{4}$
🔍 Common Traps & Fixes
Trap: Wrong quadrant signs
Fix: Always determine the quadrant first, then apply the correct signs.
Trap: Confusing degrees and radians
Fix: Be consistent with units. Convert if necessary: $180° = \pi$ radians.
Trap: Forgetting reference angles
Fix: For angles outside $[0°, 90°]$, always find the reference angle first.
Trap: Undefined tangent values
Fix: $\tan\theta$ is undefined when $\cos\theta = 0$ (at $90°$ and $270°$).
📋 Quick Reference
Unit Circle Values
- $(1,0)$ → $\cos 0° = 1$, $\sin 0° = 0$
- $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ → $\cos 30° = \frac{\sqrt{3}}{2}$, $\sin 30° = \frac{1}{2}$
- $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$ → $\cos 45° = \frac{\sqrt{2}}{2}$, $\sin 45° = \frac{\sqrt{2}}{2}$
- $(\frac{1}{2}, \frac{\sqrt{3}}{2})$ → $\cos 60° = \frac{1}{2}$, $\sin 60° = \frac{\sqrt{3}}{2}$
- $(0,1)$ → $\cos 90° = 0$, $\sin 90° = 1$
Essential Identities
- $\sin^2\theta + \cos^2\theta = 1$
- $\tan\theta = \frac{\sin\theta}{\cos\theta}$
- $\sin(90° - \theta) = \cos\theta$
- $\cos(90° - \theta) = \sin\theta$
Prev: Exponents & Logarithms
Next: Trig Identities & Equations
Back to: Topic Guides