๐ŸŽฏ Vectors (Light)

Basic vector operations in 2D for AMC 12. Focus on dot product, projections, and geometric applications.

๐ŸŽฏ Key Ideas

Vector: Directed line segment with magnitude and direction, represented as $\vec{v} = \langle a, b \rangle$ or $\vec{v} = a\mathbf{i} + b\mathbf{j}$.

Dot Product: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = a_1b_1 + a_2b_2$.

Applications: Angle between vectors, projections, perpendicularity.

๐Ÿ“ Vector Basics

Notation

  • Component form: $\vec{v} = \langle v_1, v_2 \rangle$
  • Unit vectors: $\mathbf{i} = \langle 1, 0 \rangle$, $\mathbf{j} = \langle 0, 1 \rangle$
  • Magnitude: $|\vec{v}| = \sqrt{v_1^2 + v_2^2}$

Vector Operations

  • Addition: $\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$
  • Subtraction: $\vec{u} - \vec{v} = \langle u_1 - v_1, u_2 - v_2 \rangle$
  • Scalar multiplication: $k\vec{v} = \langle kv_1, kv_2 \rangle$

Example: Find magnitude of $\vec{v} = \langle 3, -4 \rangle$

Solution:

  • $|\vec{v}| = \sqrt{3^2 + (-4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5$

๐Ÿ”ข Dot Product

Definition

For vectors $\vec{a} = \langle a_1, a_2 \rangle$ and $\vec{b} = \langle b_1, b_2 \rangle$: $$\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$$

Geometric Interpretation

$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$$

where $\theta$ is the angle between the vectors.

Properties

  • Commutative: $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
  • Distributive: $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
  • Scalar multiplication: $(k\vec{a}) \cdot \vec{b} = k(\vec{a} \cdot \vec{b})$

Example: Find dot product of $\vec{a} = \langle 2, 3 \rangle$ and $\vec{b} = \langle -1, 4 \rangle$

Solution:

  • $\vec{a} \cdot \vec{b} = 2(-1) + 3(4) = -2 + 12 = 10$

๐Ÿ“ Angle Between Vectors

Formula

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Special Cases

  • Perpendicular: $\vec{a} \cdot \vec{b} = 0$ (angle = 90ยฐ)
  • Parallel: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|$ (angle = 0ยฐ)
  • Opposite: $\vec{a} \cdot \vec{b} = -|\vec{a}||\vec{b}|$ (angle = 180ยฐ)

Example: Find angle between $\vec{u} = \langle 1, 1 \rangle$ and $\vec{v} = \langle 1, 0 \rangle$

Solution:

  1. Dot product: $\vec{u} \cdot \vec{v} = 1(1) + 1(0) = 1$
  2. Magnitudes: $|\vec{u}| = \sqrt{1^2 + 1^2} = \sqrt{2}$, $|\vec{v}| = \sqrt{1^2 + 0^2} = 1$
  3. Angle: $\cos\theta = \frac{1}{\sqrt{2} \cdot 1} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
  4. Answer: $\theta = 45ยฐ$

๐Ÿ“ Projections

Scalar Projection

Projection of $\vec{a}$ onto $\vec{b}$: $$\text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$$

Vector Projection

$$\text{Proj}_{\vec{b}} \vec{a} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$$

Example: Find projection of $\vec{a} = \langle 3, 4 \rangle$ onto $\vec{b} = \langle 1, 0 \rangle$

Solution:

  1. Dot product: $\vec{a} \cdot \vec{b} = 3(1) + 4(0) = 3$
  2. Magnitude of $\vec{b}$: $|\vec{b}| = \sqrt{1^2 + 0^2} = 1$
  3. Scalar projection: $\text{proj}_{\vec{b}} \vec{a} = \frac{3}{1} = 3$
  4. Vector projection: $\text{Proj}_{\vec{b}} \vec{a} = \frac{3}{1^2} \langle 1, 0 \rangle = \langle 3, 0 \rangle$

๐Ÿ”„ Unit Vectors

Definition

Vector with magnitude 1: $|\hat{u}| = 1$

Finding Unit Vector

$$\hat{u} = \frac{\vec{u}}{|\vec{u}|}$$

Example: Find unit vector in direction of $\vec{v} = \langle 3, -4 \rangle$

Solution:

  1. Magnitude: $|\vec{v}| = \sqrt{3^2 + (-4)^2} = 5$
  2. Unit vector: $\hat{v} = \frac{\langle 3, -4 \rangle}{5} = \langle \frac{3}{5}, -\frac{4}{5} \rangle$

๐ŸŽฏ AMC-Style Worked Example

Problem: Find the area of the parallelogram formed by vectors $\vec{u} = \langle 2, 3 \rangle$ and $\vec{v} = \langle 1, 4 \rangle$.

Solution:

  1. Cross product magnitude: For 2D vectors $\vec{u} = \langle u_1, u_2 \rangle$ and $\vec{v} = \langle v_1, v_2 \rangle$, the cross product magnitude is $|u_1v_2 - u_2v_1|$
  2. Calculate: $|2 \cdot 4 - 3 \cdot 1| = |8 - 3| = 5$
  3. Area: The area of the parallelogram is equal to the magnitude of the cross product

Answer: 5

๐Ÿ” Common Traps & Fixes

Trap: Confusing dot product and cross product

Fix: Dot product gives scalar: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$; cross product gives vector (in 3D) or scalar magnitude (in 2D).

Trap: Wrong angle formula

Fix: $\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$, not $\sin\theta$.

Trap: Forgetting absolute value in projection

Fix: Scalar projection can be negative (indicates opposite direction), but magnitude is always positive.

Trap: Wrong unit vector calculation

Fix: Divide by magnitude, not by sum of components.

๐Ÿ“‹ Quick Reference

Vector Operations

  • Magnitude: $|\vec{v}| = \sqrt{v_1^2 + v_2^2}$
  • Addition: $\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2 \rangle$
  • Scalar multiplication: $k\vec{v} = \langle kv_1, kv_2 \rangle$

Dot Product

  • Component form: $\vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2$
  • Geometric: $\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta$
  • Perpendicular: $\vec{a} \cdot \vec{b} = 0$

Projections

  • Scalar: $\text{proj}_{\vec{b}} \vec{a} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
  • Vector: $\text{Proj}_{\vec{b}} \vec{a} = \left(\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|^2}\right)\vec{b}$

Prev: Coordinate Geometry
Next: Functional Equations (Light)
Back to: Topic Guides