๐Ÿงฎ Mental Math Toolkit

Master essential mental math techniques to perform calculations quickly and accurately during the contest. Speed and accuracy in basic arithmetic will save valuable time.

๐ŸŽฏ Core Mental Math Skills

Addition & Subtraction

  • Break down numbers: $47 + 38 = 47 + 30 + 8 = 77 + 8 = 85$
  • Use complements: $100 - 47 = 53$ (since $47 + 53 = 100$)
  • Round and adjust: $298 + 156 = 300 + 156 - 2 = 456 - 2 = 454$
  • Left to right: $234 + 567 = 200 + 500 + 30 + 60 + 4 + 7 = 700 + 90 + 11 = 801$

Multiplication

  • Break down factors: $24 \times 15 = 24 \times 10 + 24 \times 5 = 240 + 120 = 360$
  • Use distributive property: $13 \times 17 = (10 + 3)(10 + 7) = 100 + 70 + 30 + 21 = 221$
  • Round and adjust: $19 \times 23 = 20 \times 23 - 23 = 460 - 23 = 437$
  • Use known products: $25 \times 16 = 25 \times 4 \times 4 = 100 \times 4 = 400$

Division

  • Break down divisors: $144 \div 12 = 144 \div 4 \div 3 = 36 \div 3 = 12$
  • Use multiplication: $168 \div 14 = ?$ โ†’ $14 \times 12 = 168$, so $168 \div 14 = 12$
  • Round and adjust: $147 \div 7 = 140 \div 7 + 7 \div 7 = 20 + 1 = 21$
  • Use factors: $180 \div 15 = 180 \div 3 \div 5 = 60 \div 5 = 12$

๐Ÿ”ข Fraction Mastery

Converting Fractions

  • To decimals: $\frac{1}{8} = 0.125$, $\frac{3}{8} = 0.375$, $\frac{5}{8} = 0.625$, $\frac{7}{8} = 0.875$
  • To percents: $\frac{1}{4} = 25%$, $\frac{1}{3} \approx 33.3%$, $\frac{2}{3} \approx 66.7%$
  • Common fractions: $\frac{1}{2} = 0.5$, $\frac{1}{4} = 0.25$, $\frac{3}{4} = 0.75$

Adding & Subtracting Fractions

  • Same denominator: $\frac{3}{7} + \frac{2}{7} = \frac{5}{7}$
  • Different denominators: $\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$
  • Mixed numbers: $2\frac{1}{3} + 1\frac{2}{3} = 3\frac{3}{3} = 4$

Multiplying & Dividing Fractions

  • Multiplication: $\frac{2}{3} \times \frac{3}{4} = \frac{6}{12} = \frac{1}{2}$
  • Division: $\frac{2}{3} \div \frac{3}{4} = \frac{2}{3} \times \frac{4}{3} = \frac{8}{9}$
  • Mixed numbers: $2\frac{1}{3} \times 1\frac{1}{2} = \frac{7}{3} \times \frac{3}{2} = \frac{21}{6} = 3\frac{1}{2}$

๐Ÿ“Š Percent Calculations

Basic Percentages

  • 10%: Move decimal one place left ($10%$ of $240 = 24$)
  • 5%: Half of 10% ($5%$ of $240 = 12$)
  • 1%: Move decimal two places left ($1%$ of $240 = 2.4$)
  • 50%: Half the number ($50%$ of $240 = 120$)

Percent Applications

  • Percent increase: $120$ increased by $25% = 120 + 30 = 150$
  • Percent decrease: $200$ decreased by $15% = 200 - 30 = 170$
  • Percent of percent: $20%$ of $30% = 0.2 \times 0.3 = 0.06 = 6%$

Quick Percent Tricks

  • $12\frac{1}{2}% = \frac{1}{8}$: $12\frac{1}{2}%$ of $80 = 10$
  • $33\frac{1}{3}% = \frac{1}{3}$: $33\frac{1}{3}%$ of $90 = 30$
  • $66\frac{2}{3}% = \frac{2}{3}$: $66\frac{2}{3}%$ of $60 = 40$

๐Ÿ”ข Perfect Squares & Roots

Perfect Squares to 30

  • $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, $4^2 = 16$, $5^2 = 25$
  • $6^2 = 36$, $7^2 = 49$, $8^2 = 64$, $9^2 = 81$, $10^2 = 100$
  • $11^2 = 121$, $12^2 = 144$, $13^2 = 169$, $14^2 = 196$, $15^2 = 225$
  • $16^2 = 256$, $17^2 = 289$, $18^2 = 324$, $19^2 = 361$, $20^2 = 400$

Square Root Approximations

  • $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$
  • $\sqrt{6} \approx 2.449$, $\sqrt{7} \approx 2.646$, $\sqrt{8} \approx 2.828$
  • $\sqrt{10} \approx 3.162$, $\sqrt{11} \approx 3.317$, $\sqrt{12} \approx 3.464$

Square Root Tricks

  • Perfect squares: $\sqrt{144} = 12$, $\sqrt{169} = 13$, $\sqrt{196} = 14$
  • Near perfect squares: $\sqrt{150} \approx \sqrt{144} = 12$ (actual: 12.25)
  • Estimation: $\sqrt{200} \approx \sqrt{196} = 14$ (actual: 14.14)

โšก Approximation Techniques

Rounding Strategies

  • Round to nearest 10: $47 + 38 \approx 50 + 40 = 90$ (actual: 85)
  • Round to nearest 100: $298 + 156 \approx 300 + 200 = 500$ (actual: 454)
  • Round to nearest 1000: $1,234 + 2,567 \approx 1,000 + 3,000 = 4,000$ (actual: 3,801)

Order of Magnitude

  • Powers of 10: $10^0 = 1$, $10^1 = 10$, $10^2 = 100$, $10^3 = 1,000$
  • Scientific notation: $2.5 \times 10^3 = 2,500$
  • Quick estimates: $47 \times 23 \approx 50 \times 20 = 1,000$ (actual: 1,081)

Approximation Examples

  • $19 \times 21$: $20 \times 20 = 400$ (actual: 399)
  • $98 \times 102$: $100 \times 100 = 10,000$ (actual: 9,996)
  • $47 \times 53$: $50 \times 50 = 2,500$ (actual: 2,491)

๐ŸŽฏ Practice Drills

5-Minute Sprint: Basic Arithmetic

Target: 20 problems in 5 minutes (90%+ accuracy)

  1. $47 + 38 = ?$
  2. $156 - 89 = ?$
  3. $24 \times 15 = ?$
  4. $168 \div 12 = ?$
  5. $13 \times 17 = ?$
  6. $144 \div 9 = ?$
  7. $29 + 47 = ?$
  8. $203 - 87 = ?$
  9. $18 \times 25 = ?$
  10. $225 \div 15 = ?$

5-Minute Sprint: Fractions & Percents

Target: 15 problems in 5 minutes (90%+ accuracy)

  1. $\frac{3}{8} + \frac{1}{4} = ?$
  2. $\frac{5}{6} - \frac{1}{3} = ?$
  3. $\frac{2}{3} \times \frac{3}{4} = ?$
  4. $\frac{3}{5} \div \frac{2}{5} = ?$
  5. $25%$ of $80 = ?$
  6. $15%$ of $120 = ?$
  7. $\frac{1}{8} = ?%$
  8. $\frac{2}{3} = ?%$
  9. $12\frac{1}{2}%$ of $40 = ?$
  10. $33\frac{1}{3}%$ of $90 = ?$

5-Minute Sprint: Perfect Squares

Target: 20 problems in 5 minutes (95%+ accuracy)

  1. $11^2 = ?$
  2. $12^2 = ?$
  3. $13^2 = ?$
  4. $14^2 = ?$
  5. $15^2 = ?$
  6. $16^2 = ?$
  7. $17^2 = ?$
  8. $18^2 = ?$
  9. $19^2 = ?$
  10. $20^2 = ?$

๐Ÿ“Š Progress Tracking

Accuracy Targets

  • Basic arithmetic: 95%+ accuracy
  • Fractions & percents: 90%+ accuracy
  • Perfect squares: 95%+ accuracy
  • Approximations: 85%+ accuracy

Speed Targets

  • Basic arithmetic: 4 problems per minute
  • Fractions & percents: 3 problems per minute
  • Perfect squares: 4 problems per minute
  • Approximations: 3 problems per minute

Weekly Goals

  • Week 1: Focus on accuracy, don’t worry about speed
  • Week 2: Maintain accuracy, increase speed by 20%
  • Week 3: Maintain accuracy, increase speed by 40%
  • Week 4: Maintain accuracy, increase speed by 60%

โšก Quick Reference

Essential Techniques:

  • Break down numbers: Use distributive property
  • Round and adjust: Round to easy numbers, then adjust
  • Use complements: Find numbers that add to round numbers
  • Left to right: Add from left to right for mental math
  • Use known products: Apply multiplication facts

Common Values:

  • $\frac{1}{8} = 0.125$, $\frac{3}{8} = 0.375$, $\frac{5}{8} = 0.625$, $\frac{7}{8} = 0.875$
  • $12\frac{1}{2}% = \frac{1}{8}$, $33\frac{1}{3}% = \frac{1}{3}$, $66\frac{2}{3}% = \frac{2}{3}$
  • $\sqrt{2} \approx 1.414$, $\sqrt{3} \approx 1.732$, $\sqrt{5} \approx 2.236$

Practice Schedule:

  • Daily: 15 minutes of mental math practice
  • Focus areas: Work on your weakest skills
  • Progressive difficulty: Increase complexity over time
  • Time pressure: Practice under time constraints
  • Accuracy first: Speed comes with accuracy

Next: Modular Arithmetic Sprints | Back to: Strategy Guide