π’ Algebra Tactics
Master the essential algebraic techniques that will help you solve equations, manipulate expressions, and handle complex algebraic relationships efficiently.
π― Core Algebraic Strategies
Substitution Techniques
- Variable substitution: Replace complex expressions with simpler variables
- Trigonometric substitution: Use trig identities for algebraic problems
- Symmetric substitution: Exploit symmetry in expressions
- Parameter substitution: Introduce parameters to simplify
Discriminant Analysis
- Quadratic discriminant: $b^2 - 4ac$ determines nature of roots
- Positive discriminant: Two distinct real roots
- Zero discriminant: One repeated real root
- Negative discriminant: Two complex roots
Conjugate Techniques
- Rationalizing denominators: Multiply by conjugate
- Complex conjugates: Use $z \cdot \overline{z} = |z|^2$
- Radical conjugates: Simplify expressions with radicals
- Trigonometric conjugates: Use complementary angles
π Substitution Mastery
Variable Substitution
When to use: Complex expressions with repeated patterns
Process:
- Identify the pattern: Look for repeated expressions
- Choose substitution: Let $u = \text{pattern}$
- Rewrite equation: Express in terms of $u$
- Solve for $u$: Use standard techniques
- Back-substitute: Find original variable
Example: Solve $x^4 - 5x^2 + 4 = 0$
Solution:
- Let $u = x^2$, then $u^2 - 5u + 4 = 0$
- Factor: $(u-1)(u-4) = 0$, so $u = 1$ or $u = 4$
- Back-substitute: $x^2 = 1$ or $x^2 = 4$
- Solutions: $x = \pm 1, \pm 2$
Symmetric Substitution
When to use: Symmetric expressions in multiple variables
Process:
- Identify symmetry: Look for symmetric patterns
- Use symmetric variables: $s = x + y$, $p = xy$
- Express in terms: Rewrite using symmetric variables
- Solve systematically: Use symmetric properties
- Find original variables: Back-substitute
Example: Solve $x + y = 5$, $xy = 6$
Solution:
- Let $s = x + y = 5$, $p = xy = 6$
- $x, y$ are roots of $t^2 - st + p = 0$
- $t^2 - 5t + 6 = 0$, so $(t-2)(t-3) = 0$
- Solutions: $(x,y) = (2,3)$ or $(3,2)$
π Discriminant Analysis
Quadratic Discriminant
Formula: $\Delta = b^2 - 4ac$ for $ax^2 + bx + c = 0$
Cases:
- $\Delta > 0$: Two distinct real roots
- $\Delta = 0$: One repeated real root
- $\Delta < 0$: Two complex roots
Applications:
- Nature of roots: Determine if roots are real
- Number of solutions: Count real solutions
- Parameter ranges: Find values for specific root types
- Optimization: Find extrema of quadratic functions
Discriminant Example
Problem: For what values of $k$ does $x^2 + kx + 1 = 0$ have real roots?
Solution:
- Discriminant: $\Delta = k^2 - 4(1)(1) = k^2 - 4$
- Real roots when $\Delta \geq 0$: $k^2 - 4 \geq 0$
- $k^2 \geq 4$, so $|k| \geq 2$
- Answer: $k \leq -2$ or $k \geq 2$
π Conjugate Techniques
Rationalizing Denominators
When to use: Denominators with radicals or complex numbers
Process:
- Identify conjugate: Change sign of radical or imaginary part
- Multiply by conjugate: Both numerator and denominator
- Simplify: Use difference of squares or other identities
- Check result: Verify the simplification
Example: Rationalize $\frac{1}{\sqrt{3} + \sqrt{2}}$
Solution:
- Conjugate: $\sqrt{3} - \sqrt{2}$
- Multiply: $\frac{1}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$
- Simplify: $\frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \frac{\sqrt{3} - \sqrt{2}}{3 - 2} = \sqrt{3} - \sqrt{2}$
Complex Conjugates
When to use: Complex numbers and expressions
Key identity: $z \cdot \overline{z} = |z|^2$
Applications:
- Modulus calculation: $|z|^2 = z \cdot \overline{z}$
- Division: $\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{|z_2|^2}$
- Real parts: $\text{Re}(z) = \frac{z + \overline{z}}{2}$
- Imaginary parts: $\text{Im}(z) = \frac{z - \overline{z}}{2i}$
π― Advanced Algebraic Techniques
Vieta’s Formulas
For quadratic: If $ax^2 + bx + c = 0$ has roots $r_1, r_2$:
- $r_1 + r_2 = -\frac{b}{a}$
- $r_1 \cdot r_2 = \frac{c}{a}$
For cubic: If $ax^3 + bx^2 + cx + d = 0$ has roots $r_1, r_2, r_3$:
- $r_1 + r_2 + r_3 = -\frac{b}{a}$
- $r_1r_2 + r_1r_3 + r_2r_3 = \frac{c}{a}$
- $r_1r_2r_3 = -\frac{d}{a}$
Vieta’s Example
Problem: If $x^2 - 5x + 6 = 0$ has roots $r_1, r_2$, find $r_1^2 + r_2^2$
Solution:
- Vieta’s: $r_1 + r_2 = 5$, $r_1r_2 = 6$
- $r_1^2 + r_2^2 = (r_1 + r_2)^2 - 2r_1r_2 = 5^2 - 2(6) = 25 - 12 = 13$
Polynomial Division
Synthetic division: For dividing by linear factors Long division: For dividing by higher degree polynomials Remainder theorem: $P(a)$ is remainder when $P(x)$ divided by $(x-a)$ Factor theorem: $(x-a)$ is factor of $P(x)$ if and only if $P(a) = 0$
β‘ Quick Algebraic Tricks
Factoring Techniques
- Common factor: Factor out common terms
- Difference of squares: $a^2 - b^2 = (a+b)(a-b)$
- Perfect squares: $a^2 \pm 2ab + b^2 = (a \pm b)^2$
- Sum/difference of cubes: $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$
- Grouping: Group terms to factor
Completing the Square
Process:
- Isolate variable terms: Move constant to other side
- Factor coefficient: Factor out coefficient of $x^2$
- Add and subtract: Add $(\frac{b}{2})^2$ inside parentheses
- Simplify: Write as perfect square
- Solve: Take square root and solve
Example: Solve $x^2 - 6x + 5 = 0$
Solution:
- $x^2 - 6x = -5$
- $x^2 - 6x + 9 = -5 + 9$ (add $(\frac{-6}{2})^2 = 9$)
- $(x-3)^2 = 4$
- $x-3 = \pm 2$, so $x = 3 \pm 2 = 1, 5$
π― Problem-Specific Strategies
Equation Solving
- Linear equations: Isolate variable
- Quadratic equations: Factor, complete square, or use formula
- Rational equations: Clear denominators
- Radical equations: Isolate radical, square both sides
- Exponential equations: Use logarithms
- Logarithmic equations: Use exponential form
Function Analysis
- Domain: Values where function is defined
- Range: Possible output values
- Intercepts: Where function crosses axes
- Symmetry: Even, odd, or neither
- Asymptotes: Vertical, horizontal, or oblique
- Extrema: Maximum and minimum values
Inequality Solving
- Linear inequalities: Solve like equations, flip sign when multiplying by negative
- Quadratic inequalities: Find roots, test intervals
- Rational inequalities: Find zeros and undefined points, test intervals
- Absolute value inequalities: Use definition of absolute value
- Compound inequalities: Solve each part separately
π¨ Common Algebraic Mistakes
Avoid These Errors:
- Sign errors: Be careful with negative signs
- Distribution errors: Don’t forget to distribute
- Factoring errors: Check your factoring
- Domain errors: Don’t divide by zero
- Extraneous solutions: Check solutions in original equation
Red Flags:
- Answer doesn’t work: Check your work
- Negative under square root: Check your work
- Division by zero: Check your work
- Impossible result: Check your work
π Quick Reference
Substitution Checklist:
- Identify pattern: Look for repeated expressions
- Choose substitution: Let $u = \text{pattern}$
- Rewrite equation: Express in terms of $u$
- Solve for $u$: Use standard techniques
- Back-substitute: Find original variable
Discriminant Checklist:
- Identify quadratic: $ax^2 + bx + c = 0$
- Calculate discriminant: $\Delta = b^2 - 4ac$
- Determine nature: Positive, zero, or negative
- Apply result: Use discriminant information
Conjugate Checklist:
- Identify conjugate: Change sign of radical or imaginary part
- Multiply by conjugate: Both numerator and denominator
- Simplify: Use difference of squares or other identities
- Check result: Verify the simplification
Prev: Endgame Management | Next: Number Theory Tactics | Back to: Strategy Guide