π Precalculus Tactics
Master the essential precalculus techniques that will help you solve problems involving trigonometry, logarithms, exponential functions, and advanced function analysis efficiently.
π― Core Precalculus Strategies
Trigonometry Identities
- Pythagorean identities: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$
- Angle sum/difference: $\sin(A \pm B)$, $\cos(A \pm B)$, $\tan(A \pm B)$
- Double angle: $\sin(2x)$, $\cos(2x)$, $\tan(2x)$
- Half angle: $\sin(\frac{x}{2})$, $\cos(\frac{x}{2})$, $\tan(\frac{x}{2})$
Logarithm Properties
- Product rule: $\log_a(xy) = \log_a x + \log_a y$
- Quotient rule: $\log_a(\frac{x}{y}) = \log_a x - \log_a y$
- Power rule: $\log_a(x^n) = n \log_a x$
- Change of base: $\log_a x = \frac{\log_b x}{\log_b a}$
Exponential Functions
- Exponential properties: $a^x \cdot a^y = a^{x+y}$, $\frac{a^x}{a^y} = a^{x-y}$, $(a^x)^y = a^{xy}$
- Natural exponential: $e^x$ and its properties
- Exponential growth/decay: $A = A_0 e^{kt}$
- Compound interest: $A = P(1 + \frac{r}{n})^{nt}$
π Trigonometry Mastery
Pythagorean Identities
Basic identity: $\sin^2 x + \cos^2 x = 1$ Derived identities:
- $1 + \tan^2 x = \sec^2 x$
- $1 + \cot^2 x = \csc^2 x$
When to use: Simplifying trigonometric expressions, solving equations
Example: Simplify $\sin^2 x + \cos^2 x + \tan^2 x$
Solution:
- $\sin^2 x + \cos^2 x + \tan^2 x = 1 + \tan^2 x = \sec^2 x$
Angle Sum and Difference
Sine formulas:
- $\sin(A + B) = \sin A \cos B + \cos A \sin B$
- $\sin(A - B) = \sin A \cos B - \cos A \sin B$
Cosine formulas:
- $\cos(A + B) = \cos A \cos B - \sin A \sin B$
- $\cos(A - B) = \cos A \cos B + \sin A \sin B$
Tangent formulas:
- $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
- $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$
Double Angle Formulas
Sine: $\sin(2x) = 2\sin x \cos x$ Cosine: $\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$ Tangent: $\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$
When to use: Simplifying expressions with double angles, solving equations
Half Angle Formulas
Sine: $\sin(\frac{x}{2}) = \pm\sqrt{\frac{1 - \cos x}{2}}$ Cosine: $\cos(\frac{x}{2}) = \pm\sqrt{\frac{1 + \cos x}{2}}$ Tangent: $\tan(\frac{x}{2}) = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$
When to use: Simplifying expressions with half angles, solving equations
β‘ Logarithm Mastery
Basic Properties
Product rule: $\log_a(xy) = \log_a x + \log_a y$ Quotient rule: $\log_a(\frac{x}{y}) = \log_a x - \log_a y$ Power rule: $\log_a(x^n) = n \log_a x$ Change of base: $\log_a x = \frac{\log_b x}{\log_b a}$
When to use: Simplifying logarithmic expressions, solving equations
Logarithm Example
Problem: Simplify $\log_2(8x^3) - \log_2(2x)$
Solution:
- $\log_2(8x^3) - \log_2(2x) = \log_2(\frac{8x^3}{2x}) = \log_2(4x^2)$
- $= \log_2(4) + \log_2(x^2) = 2 + 2\log_2(x)$
Natural Logarithms
Definition: $\ln x = \log_e x$ Properties: Same as general logarithms Special values: $\ln 1 = 0$, $\ln e = 1$ Derivative: $\frac{d}{dx}[\ln x] = \frac{1}{x}$
Logarithmic Equations
Process:
- Isolate logarithm: Get logarithm on one side
- Apply exponential: Use $a^{\log_a x} = x$
- Solve for variable: Use standard techniques
- Check domain: Ensure argument is positive
Example: Solve $\log_2(x + 3) = 4$
Solution:
- $x + 3 = 2^4 = 16$
- $x = 16 - 3 = 13$
- Check: $\log_2(13 + 3) = \log_2(16) = 4$ β
π’ Exponential Function Mastery
Basic Properties
Product rule: $a^x \cdot a^y = a^{x+y}$ Quotient rule: $\frac{a^x}{a^y} = a^{x-y}$ Power rule: $(a^x)^y = a^{xy}$ Zero rule: $a^0 = 1$ (for $a \neq 0$) Negative rule: $a^{-x} = \frac{1}{a^x}$
When to use: Simplifying exponential expressions, solving equations
Exponential Example
Problem: Simplify $\frac{2^{x+3} \cdot 4^{x-1}}{8^{x-2}}$
Solution:
- $\frac{2^{x+3} \cdot 4^{x-1}}{8^{x-2}} = \frac{2^{x+3} \cdot (2^2)^{x-1}}{(2^3)^{x-2}}$
- $= \frac{2^{x+3} \cdot 2^{2x-2}}{2^{3x-6}} = \frac{2^{3x+1}}{2^{3x-6}} = 2^{7} = 128$
Natural Exponential
Definition: $e^x$ where $e \approx 2.718$ Properties: Same as general exponentials Special values: $e^0 = 1$, $e^1 = e$ Derivative: $\frac{d}{dx}[e^x] = e^x$
Exponential Equations
Process:
- Isolate exponential: Get exponential on one side
- Apply logarithm: Take logarithm of both sides
- Solve for variable: Use standard techniques
- Check answer: Verify the solution
Example: Solve $3^{2x-1} = 27$
Solution:
- $3^{2x-1} = 3^3$, so $2x - 1 = 3$
- $2x = 4$, so $x = 2$
- Check: $3^{2(2)-1} = 3^3 = 27$ β
π― Advanced Function Techniques
Function Composition
Definition: $(f \circ g)(x) = f(g(x))$ Properties: Not commutative, associative Inverse functions: $(f \circ f^{-1})(x) = x$ Domain: Must consider domain of inner function
Function Inverses
Definition: $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$ Finding inverse: Swap $x$ and $y$, solve for $y$ Graph: Reflect across $y = x$ Domain/range: Swap domain and range
Function Transformations
Vertical shift: $f(x) + c$ (up if $c > 0$) Horizontal shift: $f(x - c)$ (right if $c > 0$) Vertical stretch: $a \cdot f(x)$ (stretch if $|a| > 1$) Horizontal stretch: $f(bx)$ (compress if $|b| > 1$) Reflection: $-f(x)$ (across $x$-axis), $f(-x)$ (across $y$-axis)
β‘ Quick Precalculus Tricks
Special Angles
Degrees: 0Β°, 30Β°, 45Β°, 60Β°, 90Β° Radians: 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$ Values: Use unit circle or special triangles
Common Values
$\sin 30Β° = \frac{1}{2}$, $\cos 30Β° = \frac{\sqrt{3}}{2}$ $\sin 45Β° = \frac{\sqrt{2}}{2}$, $\cos 45Β° = \frac{\sqrt{2}}{2}$ $\sin 60Β° = \frac{\sqrt{3}}{2}$, $\cos 60Β° = \frac{1}{2}$
Logarithmic Identities
$\log_a a = 1$, $\log_a 1 = 0$ $a^{\log_a x} = x$, $\log_a(a^x) = x$ $\log_a x = \frac{\ln x}{\ln a}$ (change of base)
Exponential Identities
$e^{\ln x} = x$, $\ln(e^x) = x$ $e^{x+y} = e^x \cdot e^y$, $e^{x-y} = \frac{e^x}{e^y}$ $(e^x)^y = e^{xy}$
π― Problem-Specific Strategies
Trigonometry Problems
- Use identities: Apply appropriate trigonometric identities
- Use special angles: Apply known values
- Use unit circle: Visualize trigonometric values
- Use graphs: Understand trigonometric functions
Logarithm Problems
- Use properties: Apply logarithmic properties
- Use change of base: Convert to common logarithms
- Use exponentials: Convert to exponential form
- Check domain: Ensure arguments are positive
Exponential Problems
- Use properties: Apply exponential properties
- Use logarithms: Take logarithms to solve
- Use special values: Apply known exponential values
- Check answers: Verify solutions
Function Problems
- Use composition: Apply function composition
- Use inverses: Find and use inverse functions
- Use transformations: Apply function transformations
- Use graphs: Visualize function behavior
π¨ Common Precalculus Mistakes
Avoid These Errors:
- Trig identity errors: Check your trigonometric identities
- Logarithm errors: Check your logarithmic properties
- Exponential errors: Check your exponential properties
- Domain errors: Check domains of functions
- Sign errors: Be careful with signs
Red Flags:
- Answer doesn’t work: Check your calculations
- Negative under square root: Check your work
- Division by zero: Check your work
- Impossible result: Check your work
π Quick Reference
Trigonometry Checklist:
- Identify the function: What trigonometric function is involved?
- Apply identities: Use appropriate trigonometric identities
- Use special angles: Apply known values
- Simplify: Reduce to simplest form
- Check answer: Verify the result
Logarithm Checklist:
- Identify the base: What is the logarithm base?
- Apply properties: Use logarithmic properties
- Use change of base: Convert if needed
- Solve for variable: Use standard techniques
- Check domain: Ensure argument is positive
Exponential Checklist:
- Identify the base: What is the exponential base?
- Apply properties: Use exponential properties
- Use logarithms: Take logarithms if needed
- Solve for variable: Use standard techniques
- Check answer: Verify the solution
Prev: Counting & Probability Tactics | Next: Pre-Test Checklist | Back to: Strategy Guide