πŸ“Š Precalculus Tactics

Master the essential precalculus techniques that will help you solve problems involving trigonometry, logarithms, exponential functions, and advanced function analysis efficiently.

🎯 Core Precalculus Strategies

Trigonometry Identities

  • Pythagorean identities: $\sin^2 x + \cos^2 x = 1$, $1 + \tan^2 x = \sec^2 x$, $1 + \cot^2 x = \csc^2 x$
  • Angle sum/difference: $\sin(A \pm B)$, $\cos(A \pm B)$, $\tan(A \pm B)$
  • Double angle: $\sin(2x)$, $\cos(2x)$, $\tan(2x)$
  • Half angle: $\sin(\frac{x}{2})$, $\cos(\frac{x}{2})$, $\tan(\frac{x}{2})$

Logarithm Properties

  • Product rule: $\log_a(xy) = \log_a x + \log_a y$
  • Quotient rule: $\log_a(\frac{x}{y}) = \log_a x - \log_a y$
  • Power rule: $\log_a(x^n) = n \log_a x$
  • Change of base: $\log_a x = \frac{\log_b x}{\log_b a}$

Exponential Functions

  • Exponential properties: $a^x \cdot a^y = a^{x+y}$, $\frac{a^x}{a^y} = a^{x-y}$, $(a^x)^y = a^{xy}$
  • Natural exponential: $e^x$ and its properties
  • Exponential growth/decay: $A = A_0 e^{kt}$
  • Compound interest: $A = P(1 + \frac{r}{n})^{nt}$

πŸ”„ Trigonometry Mastery

Pythagorean Identities

Basic identity: $\sin^2 x + \cos^2 x = 1$ Derived identities:

  • $1 + \tan^2 x = \sec^2 x$
  • $1 + \cot^2 x = \csc^2 x$

When to use: Simplifying trigonometric expressions, solving equations

Example: Simplify $\sin^2 x + \cos^2 x + \tan^2 x$

Solution:

  • $\sin^2 x + \cos^2 x + \tan^2 x = 1 + \tan^2 x = \sec^2 x$

Angle Sum and Difference

Sine formulas:

  • $\sin(A + B) = \sin A \cos B + \cos A \sin B$
  • $\sin(A - B) = \sin A \cos B - \cos A \sin B$

Cosine formulas:

  • $\cos(A + B) = \cos A \cos B - \sin A \sin B$
  • $\cos(A - B) = \cos A \cos B + \sin A \sin B$

Tangent formulas:

  • $\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$
  • $\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$

Double Angle Formulas

Sine: $\sin(2x) = 2\sin x \cos x$ Cosine: $\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$ Tangent: $\tan(2x) = \frac{2\tan x}{1 - \tan^2 x}$

When to use: Simplifying expressions with double angles, solving equations

Half Angle Formulas

Sine: $\sin(\frac{x}{2}) = \pm\sqrt{\frac{1 - \cos x}{2}}$ Cosine: $\cos(\frac{x}{2}) = \pm\sqrt{\frac{1 + \cos x}{2}}$ Tangent: $\tan(\frac{x}{2}) = \frac{1 - \cos x}{\sin x} = \frac{\sin x}{1 + \cos x}$

When to use: Simplifying expressions with half angles, solving equations

⚑ Logarithm Mastery

Basic Properties

Product rule: $\log_a(xy) = \log_a x + \log_a y$ Quotient rule: $\log_a(\frac{x}{y}) = \log_a x - \log_a y$ Power rule: $\log_a(x^n) = n \log_a x$ Change of base: $\log_a x = \frac{\log_b x}{\log_b a}$

When to use: Simplifying logarithmic expressions, solving equations

Logarithm Example

Problem: Simplify $\log_2(8x^3) - \log_2(2x)$

Solution:

  • $\log_2(8x^3) - \log_2(2x) = \log_2(\frac{8x^3}{2x}) = \log_2(4x^2)$
  • $= \log_2(4) + \log_2(x^2) = 2 + 2\log_2(x)$

Natural Logarithms

Definition: $\ln x = \log_e x$ Properties: Same as general logarithms Special values: $\ln 1 = 0$, $\ln e = 1$ Derivative: $\frac{d}{dx}[\ln x] = \frac{1}{x}$

Logarithmic Equations

Process:

  1. Isolate logarithm: Get logarithm on one side
  2. Apply exponential: Use $a^{\log_a x} = x$
  3. Solve for variable: Use standard techniques
  4. Check domain: Ensure argument is positive

Example: Solve $\log_2(x + 3) = 4$

Solution:

  • $x + 3 = 2^4 = 16$
  • $x = 16 - 3 = 13$
  • Check: $\log_2(13 + 3) = \log_2(16) = 4$ βœ“

πŸ”’ Exponential Function Mastery

Basic Properties

Product rule: $a^x \cdot a^y = a^{x+y}$ Quotient rule: $\frac{a^x}{a^y} = a^{x-y}$ Power rule: $(a^x)^y = a^{xy}$ Zero rule: $a^0 = 1$ (for $a \neq 0$) Negative rule: $a^{-x} = \frac{1}{a^x}$

When to use: Simplifying exponential expressions, solving equations

Exponential Example

Problem: Simplify $\frac{2^{x+3} \cdot 4^{x-1}}{8^{x-2}}$

Solution:

  • $\frac{2^{x+3} \cdot 4^{x-1}}{8^{x-2}} = \frac{2^{x+3} \cdot (2^2)^{x-1}}{(2^3)^{x-2}}$
  • $= \frac{2^{x+3} \cdot 2^{2x-2}}{2^{3x-6}} = \frac{2^{3x+1}}{2^{3x-6}} = 2^{7} = 128$

Natural Exponential

Definition: $e^x$ where $e \approx 2.718$ Properties: Same as general exponentials Special values: $e^0 = 1$, $e^1 = e$ Derivative: $\frac{d}{dx}[e^x] = e^x$

Exponential Equations

Process:

  1. Isolate exponential: Get exponential on one side
  2. Apply logarithm: Take logarithm of both sides
  3. Solve for variable: Use standard techniques
  4. Check answer: Verify the solution

Example: Solve $3^{2x-1} = 27$

Solution:

  • $3^{2x-1} = 3^3$, so $2x - 1 = 3$
  • $2x = 4$, so $x = 2$
  • Check: $3^{2(2)-1} = 3^3 = 27$ βœ“

🎯 Advanced Function Techniques

Function Composition

Definition: $(f \circ g)(x) = f(g(x))$ Properties: Not commutative, associative Inverse functions: $(f \circ f^{-1})(x) = x$ Domain: Must consider domain of inner function

Function Inverses

Definition: $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$ Finding inverse: Swap $x$ and $y$, solve for $y$ Graph: Reflect across $y = x$ Domain/range: Swap domain and range

Function Transformations

Vertical shift: $f(x) + c$ (up if $c > 0$) Horizontal shift: $f(x - c)$ (right if $c > 0$) Vertical stretch: $a \cdot f(x)$ (stretch if $|a| > 1$) Horizontal stretch: $f(bx)$ (compress if $|b| > 1$) Reflection: $-f(x)$ (across $x$-axis), $f(-x)$ (across $y$-axis)

⚑ Quick Precalculus Tricks

Special Angles

Degrees: 0Β°, 30Β°, 45Β°, 60Β°, 90Β° Radians: 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$ Values: Use unit circle or special triangles

Common Values

$\sin 30Β° = \frac{1}{2}$, $\cos 30Β° = \frac{\sqrt{3}}{2}$ $\sin 45Β° = \frac{\sqrt{2}}{2}$, $\cos 45Β° = \frac{\sqrt{2}}{2}$ $\sin 60Β° = \frac{\sqrt{3}}{2}$, $\cos 60Β° = \frac{1}{2}$

Logarithmic Identities

$\log_a a = 1$, $\log_a 1 = 0$ $a^{\log_a x} = x$, $\log_a(a^x) = x$ $\log_a x = \frac{\ln x}{\ln a}$ (change of base)

Exponential Identities

$e^{\ln x} = x$, $\ln(e^x) = x$ $e^{x+y} = e^x \cdot e^y$, $e^{x-y} = \frac{e^x}{e^y}$ $(e^x)^y = e^{xy}$

🎯 Problem-Specific Strategies

Trigonometry Problems

  • Use identities: Apply appropriate trigonometric identities
  • Use special angles: Apply known values
  • Use unit circle: Visualize trigonometric values
  • Use graphs: Understand trigonometric functions

Logarithm Problems

  • Use properties: Apply logarithmic properties
  • Use change of base: Convert to common logarithms
  • Use exponentials: Convert to exponential form
  • Check domain: Ensure arguments are positive

Exponential Problems

  • Use properties: Apply exponential properties
  • Use logarithms: Take logarithms to solve
  • Use special values: Apply known exponential values
  • Check answers: Verify solutions

Function Problems

  • Use composition: Apply function composition
  • Use inverses: Find and use inverse functions
  • Use transformations: Apply function transformations
  • Use graphs: Visualize function behavior

🚨 Common Precalculus Mistakes

Avoid These Errors:

  • Trig identity errors: Check your trigonometric identities
  • Logarithm errors: Check your logarithmic properties
  • Exponential errors: Check your exponential properties
  • Domain errors: Check domains of functions
  • Sign errors: Be careful with signs

Red Flags:

  • Answer doesn’t work: Check your calculations
  • Negative under square root: Check your work
  • Division by zero: Check your work
  • Impossible result: Check your work

πŸ“Š Quick Reference

Trigonometry Checklist:

  • Identify the function: What trigonometric function is involved?
  • Apply identities: Use appropriate trigonometric identities
  • Use special angles: Apply known values
  • Simplify: Reduce to simplest form
  • Check answer: Verify the result

Logarithm Checklist:

  • Identify the base: What is the logarithm base?
  • Apply properties: Use logarithmic properties
  • Use change of base: Convert if needed
  • Solve for variable: Use standard techniques
  • Check domain: Ensure argument is positive

Exponential Checklist:

  • Identify the base: What is the exponential base?
  • Apply properties: Use exponential properties
  • Use logarithms: Take logarithms if needed
  • Solve for variable: Use standard techniques
  • Check answer: Verify the solution

Prev: Counting & Probability Tactics | Next: Pre-Test Checklist | Back to: Strategy Guide