🔢 Fractions, Decimals, Percents — Formulas
Essential formulas and shortcuts for working with rational numbers in MATHCOUNTS.
Fraction Operations
Basic Operations
Addition: $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$ Subtraction: $\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}$ Multiplication: $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$ Division: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$
Mixed Numbers
Convert to improper: $a\frac{b}{c} = \frac{ac + b}{c}$ Convert to mixed: $\frac{a}{b} = \left\lfloor \frac{a}{b} \right\rfloor + \frac{a \bmod b}{b}$
Examples:
- $2\frac{3}{4} = \frac{2 \times 4 + 3}{4} = \frac{11}{4}$
- $\frac{11}{4} = 2 + \frac{3}{4} = 2\frac{3}{4}$
Simplifying Fractions
GCF method: $\frac{a}{b} = \frac{a \div \text{GCF}(a,b)}{b \div \text{GCF}(a,b)}$ Prime factorization: Cancel common prime factors
Example: Simplify $\frac{24}{36}$
- GCF(24, 36) = 12
- $\frac{24}{36} = \frac{24 \div 12}{36 \div 12} = \frac{2}{3}$
Decimal Operations
Addition and Subtraction
Method: Line up decimal points, then add/subtract Example: $3.47 + 2.15 = 5.62$
Multiplication
Method: Multiply as whole numbers, count decimal places Formula: $(a \times 10^m) \times (b \times 10^n) = ab \times 10^{m+n}$
Example: $3.4 \times 2.5 = 8.5$ (1 + 1 = 2 decimal places)
Division
Method: Move decimal point to make divisor whole number Formula: $\frac{a \times 10^m}{b \times 10^n} = \frac{a}{b} \times 10^{m-n}$
Example: $3.6 \div 0.4 = 36 \div 4 = 9$
Percent Formulas
Basic Percent Calculations
Percent of number: $a%$ of $b = \frac{a}{100} \times b$ What percent: $\frac{a}{b} \times 100%$ Percent change: $\frac{\text{new} - \text{original}}{\text{original}} \times 100%$
Examples:
- $25%$ of 80 = $0.25 \times 80 = 20$
- What percent is 15 of 60? $\frac{15}{60} \times 100% = 25%$
- Increase from 80 to 100: $\frac{100-80}{80} \times 100% = 25%$
Compound Percent
Simple interest: $I = P \times r \times t$ Compound interest: $A = P(1 + r)^t$
Where:
- $P$ = principal
- $r$ = rate (as decimal)
- $t$ = time
- $A$ = amount
- $I$ = interest
Conversion Formulas
Fraction to Decimal
Method 1: $\frac{a}{b} = a \div b$ Method 2: Use equivalent fractions with powers of 10
Examples:
- $\frac{3}{4} = 3 \div 4 = 0.75$
- $\frac{3}{4} = \frac{75}{100} = 0.75$
Decimal to Fraction
Method: $0.abc = \frac{abc}{1000}$, then simplify
Example: $0.75 = \frac{75}{100} = \frac{3}{4}$
Fraction to Percent
Method: $\frac{a}{b} = \frac{a}{b} \times 100%$
Example: $\frac{3}{4} = \frac{3}{4} \times 100% = 75%$
Percent to Fraction
Method: $a% = \frac{a}{100}$, then simplify
Example: $75% = \frac{75}{100} = \frac{3}{4}$
Decimal to Percent
Method: $0.abc = 0.abc \times 100% = abc%$
Example: $0.75 = 0.75 \times 100% = 75%$
Percent to Decimal
Method: $a% = a \div 100$
Example: $75% = 75 \div 100 = 0.75$
Common Fraction-Decimal-Percent Equivalents
| Fraction | Decimal | Percent |
|---|---|---|
| $\frac{1}{2}$ | 0.5 | 50% |
| $\frac{1}{3}$ | 0.333… | 33.3% |
| $\frac{2}{3}$ | 0.666… | 66.6% |
| $\frac{1}{4}$ | 0.25 | 25% |
| $\frac{3}{4}$ | 0.75 | 75% |
| $\frac{1}{5}$ | 0.2 | 20% |
| $\frac{2}{5}$ | 0.4 | 40% |
| $\frac{3}{5}$ | 0.6 | 60% |
| $\frac{4}{5}$ | 0.8 | 80% |
| $\frac{1}{6}$ | 0.166… | 16.6% |
| $\frac{5}{6}$ | 0.833… | 83.3% |
| $\frac{1}{8}$ | 0.125 | 12.5% |
| $\frac{3}{8}$ | 0.375 | 37.5% |
| $\frac{5}{8}$ | 0.625 | 62.5% |
| $\frac{7}{8}$ | 0.875 | 87.5% |
| $\frac{1}{10}$ | 0.1 | 10% |
| $\frac{1}{20}$ | 0.05 | 5% |
| $\frac{1}{25}$ | 0.04 | 4% |
| $\frac{1}{50}$ | 0.02 | 2% |
| $\frac{1}{100}$ | 0.01 | 1% |
Mental Math Shortcuts
Percent Shortcuts
10% of $n$: $n \div 10$ 5% of $n$: $10%$ of $n \div 2$ 1% of $n$: $n \div 100$ 20% of $n$: $10%$ of $n \times 2$ 25% of $n$: $n \div 4$ 50% of $n$: $n \div 2$ 75% of $n$: $n \div 4 \times 3$
Examples:
- 10% of 80 = 8
- 5% of 80 = 4
- 20% of 80 = 16
- 25% of 80 = 20
Fraction Shortcuts
Half: $\frac{1}{2}$ of $n = n \div 2$ Quarter: $\frac{1}{4}$ of $n = n \div 4$ Third: $\frac{1}{3}$ of $n = n \div 3$ Fifth: $\frac{1}{5}$ of $n = n \div 5$
Examples:
- $\frac{1}{2}$ of 60 = 30
- $\frac{1}{4}$ of 60 = 15
- $\frac{1}{3}$ of 60 = 20
- $\frac{1}{5}$ of 60 = 12
Word Problem Formulas
Part-Whole Problems
Find part: Part = Percent × Whole Find whole: Whole = Part ÷ Percent Find percent: Percent = Part ÷ Whole × 100%
Examples:
- 25% of 80 = 0.25 × 80 = 20
- 20 is what percent of 80? 20 ÷ 80 × 100% = 25%
- 20 is 25% of what number? 20 ÷ 0.25 = 80
Mixture Problems
Weighted average: $\frac{a_1 \times p_1 + a_2 \times p_2 + … + a_n \times p_n}{a_1 + a_2 + … + a_n}$
Example: Mix 2 liters of 20% solution with 3 liters of 80% solution
- $\frac{2 \times 0.20 + 3 \times 0.80}{2 + 3} = \frac{0.4 + 2.4}{5} = \frac{2.8}{5} = 0.56 = 56%$
Rate Problems
Distance: $d = rt$ Rate: $r = \frac{d}{t}$ Time: $t = \frac{d}{r}$
With percents: $d = r(1 + p%)t$ where $p%$ is percent change
Scientific Notation
Basic Format
Standard form: $a \times 10^n$ where $1 \leq a < 10$
Examples:
- $3,400 = 3.4 \times 10^3$
- $0.0007 = 7 \times 10^{-4}$
Operations
Multiplication: $(a \times 10^m) \times (b \times 10^n) = ab \times 10^{m+n}$ Division: $\frac{a \times 10^m}{b \times 10^n} = \frac{a}{b} \times 10^{m-n}$ Addition/Subtraction: Convert to same power of 10
Examples:
- $(2 \times 10^3) \times (3 \times 10^4) = 6 \times 10^7$
- $\frac{6 \times 10^8}{2 \times 10^3} = 3 \times 10^5$
Rounding Rules
Standard Rounding
0-4: Round down 5-9: Round up Ties: Round to even (banker’s rounding)
Significant Figures
Count digits from left, starting with first non-zero digit Round to specified number of significant figures
Examples:
- 3.14159 to 3 sig figs = 3.14
- 0.0001234 to 2 sig figs = 0.00012
Previous: Problem Types
Back to: Fractions, Decimals, Percents