📊 Ratios, Rates, Proportions — Formulas
Essential formulas and shortcuts for working with ratios, rates, and proportions in MATHCOUNTS.
Ratio Formulas
Basic Operations
Addition: $a:b + c:d = (ad + bc):bd$ Subtraction: $a:b - c:d = (ad - bc):bd$ Multiplication: $(a:b) \times (c:d) = ac:bd$ Division: $(a:b) \div (c:d) = ad:bc$
Simplifying Ratios
GCF method: $a:b = \frac{a \div \text{GCF}(a,b)}{b \div \text{GCF}(a,b)}$ Prime factorization: Cancel common prime factors
Example: Simplify $24:36$
- GCF(24, 36) = 12
- $24:36 = \frac{24 \div 12}{36 \div 12} = 2:3$
Equivalent Ratios
Cross products: If $a:b = c:d$, then $ad = bc$ Scale factor: If $a:b = c:d$, then $c = \frac{ad}{b}$
Example: If $3:4 = x:12$, then $3 \times 12 = 4x$, so $x = 9$
Rate Formulas
Basic Rate
Formula: Rate = $\frac{\text{Quantity 1}}{\text{Quantity 2}}$ Unit rate: Rate with denominator of 1
Examples:
- Speed: $\frac{\text{Distance}}{\text{Time}}$
- Price: $\frac{\text{Cost}}{\text{Quantity}}$
- Work: $\frac{\text{Work Done}}{\text{Time}}$
Rate Conversions
Length: 1 mile = 5280 feet, 1 km = 1000 meters Time: 1 hour = 3600 seconds, 1 day = 86400 seconds Volume: 1 gallon = 4 quarts, 1 liter = 1000 milliliters
Conversion formula: $\text{New rate} = \text{Old rate} \times \frac{\text{Conversion factor}}{\text{Conversion factor}}$
Example: Convert 60 mph to ft/s
- $60 \text{ mph} = 60 \times \frac{5280 \text{ ft}}{3600 \text{ s}} = 88 \text{ ft/s}$
Combined Rates
Same direction: $r_{\text{combined}} = r_1 + r_2$ Opposite direction: $r_{\text{relative}} = |r_1 - r_2|$ Harmonic mean: $r_{\text{average}} = \frac{2r_1 r_2}{r_1 + r_2}$
Example: Car A goes 60 mph, Car B goes 40 mph
- Same direction: 60 - 40 = 20 mph relative speed
- Opposite direction: 60 + 40 = 100 mph relative speed
Proportion Formulas
Direct Proportion
Formula: $y = kx$ where $k$ is constant of proportionality Cross products: If $\frac{a}{b} = \frac{c}{d}$, then $ad = bc$
Example: If $y$ varies directly with $x$ and $y = 6$ when $x = 2$
- $6 = k \times 2$, so $k = 3$
- $y = 3x$
Inverse Proportion
Formula: $y = \frac{k}{x}$ where $k$ is constant of proportionality Product rule: If $y$ varies inversely with $x$, then $xy = k$
Example: If $y$ varies inversely with $x$ and $y = 6$ when $x = 2$
- $6 = \frac{k}{2}$, so $k = 12$
- $y = \frac{12}{x}$
Solving Proportions
Method 1: Cross multiplication
- $\frac{a}{b} = \frac{c}{d}$ becomes $ad = bc$
Method 2: Scale factor
- If $\frac{a}{b} = \frac{c}{d}$, then $c = \frac{ad}{b}$
Method 3: Equivalent ratios
- $\frac{a}{b} = \frac{c}{d}$ becomes $\frac{a}{c} = \frac{b}{d}$
Scale and Similarity Formulas
Scale Factor
Definition: $\text{Scale factor} = \frac{\text{New length}}{\text{Original length}}$ Area scaling: New area = Original area × (scale factor)² Volume scaling: New volume = Original volume × (scale factor)³
Example: If scale factor is 3
- Area is multiplied by 9
- Volume is multiplied by 27
Similar Figures
Corresponding sides: $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k$ Area ratio: $\frac{A_1}{A_2} = k^2$ Volume ratio: $\frac{V_1}{V_2} = k^3$
Example: Two similar triangles with scale factor 2:3
- Area ratio: 4:9
- Volume ratio: 8:27
Word Problem Formulas
Part-Whole Problems
Formula: $\frac{\text{part}}{\text{whole}} = \frac{\text{part}}{\text{whole}}$ Example: If 3 out of 7 students are boys, how many boys in a class of 28?
- $\frac{3}{7} = \frac{x}{28}$, so $x = 12$ boys
Mixture Problems
Weighted average: $\frac{a_1 \times p_1 + a_2 \times p_2 + … + a_n \times p_n}{a_1 + a_2 + … + a_n}$
Example: Mix 2 liters of 20% solution with 3 liters of 80% solution
- $\frac{2 \times 0.20 + 3 \times 0.80}{2 + 3} = \frac{0.4 + 2.4}{5} = 0.56 = 56%$
Work Problems
Individual rate: $r = \frac{\text{work}}{\text{time}}$ Combined rate: $r_{\text{combined}} = r_1 + r_2 + … + r_n$ Time to complete: $t = \frac{\text{work}}{r_{\text{combined}}}$
Example: Pipe A fills tank in 3 hours, Pipe B in 6 hours
- Combined rate: $\frac{1}{3} + \frac{1}{6} = \frac{1}{2}$ tank/hour
- Time together: 2 hours
Distance Problems
Basic formula: $d = rt$ Same direction: $d_1 - d_2 = (r_1 - r_2)t$ Opposite direction: $d_1 + d_2 = (r_1 + r_2)t$
Example: Two cars start 100 miles apart, one goes 60 mph, other 40 mph
- Relative speed: 60 + 40 = 100 mph
- Time to meet: $\frac{100}{100} = 1$ hour
Unit Conversion Formulas
Length Conversions
| From | To | Multiply By |
|---|---|---|
| inches | feet | $\frac{1}{12}$ |
| feet | yards | $\frac{1}{3}$ |
| yards | miles | $\frac{1}{1760}$ |
| feet | miles | $\frac{1}{5280}$ |
| meters | kilometers | $\frac{1}{1000}$ |
| centimeters | meters | $\frac{1}{100}$ |
Time Conversions
| From | To | Multiply By |
|---|---|---|
| seconds | minutes | $\frac{1}{60}$ |
| minutes | hours | $\frac{1}{60}$ |
| hours | days | $\frac{1}{24}$ |
| days | weeks | $\frac{1}{7}$ |
| weeks | years | $\frac{1}{52}$ |
Volume Conversions
| From | To | Multiply By |
|---|---|---|
| cups | pints | $\frac{1}{2}$ |
| pints | quarts | $\frac{1}{2}$ |
| quarts | gallons | $\frac{1}{4}$ |
| milliliters | liters | $\frac{1}{1000}$ |
| liters | gallons | $\frac{1}{3.785}$ |
Mental Math Shortcuts
Common Ratios
1:2: Half 1:3: Third 1:4: Quarter 2:3: Two-thirds 3:4: Three-quarters 1:5: Fifth 1:10: Tenth
Rate Shortcuts
10% of $n$: $n \div 10$ 20% of $n$: $n \div 5$ 25% of $n$: $n \div 4$ 50% of $n$: $n \div 2$ 75% of $n$: $n \div 4 \times 3$
Proportion Shortcuts
If $a:b = c:d$, then:
- $a:c = b:d$
- $b:a = d:c$
- $c:a = d:b$
Example: If $3:4 = 6:8$, then:
- $3:6 = 4:8$ (1:2 = 1:2)
- $4:3 = 8:6$ (4:3 = 4:3)
- $6:3 = 8:4$ (2:1 = 2:1)
Common Applications
Business Problems
Markup: Selling price = Cost + (Markup % × Cost) Discount: Sale price = Original price - (Discount % × Original price) Profit: Profit = Revenue - Cost Profit margin: Profit margin = $\frac{\text{Profit}}{\text{Revenue}} \times 100%$
Science Problems
Density: Density = $\frac{\text{Mass}}{\text{Volume}}$ Pressure: Pressure = $\frac{\text{Force}}{\text{Area}}$ Speed: Speed = $\frac{\text{Distance}}{\text{Time}}$ Acceleration: Acceleration = $\frac{\text{Change in velocity}}{\text{Time}}$
Geometry Problems
Scale factor: $\frac{\text{New length}}{\text{Original length}}$ Area ratio: (Scale factor)² Volume ratio: (Scale factor)³ Perimeter ratio: Scale factor
Previous: Problem Types
Back to: Ratios, Rates, Proportions