🧮 Mental Math Tricks
Master mental math techniques to solve problems faster and more accurately.
Basic Arithmetic Shortcuts
Addition Tricks
Adding 9: Add 10, then subtract 1
- $47 + 9 = 47 + 10 - 1 = 56$
Adding 11: Add 10, then add 1
- $47 + 11 = 47 + 10 + 1 = 58$
Adding near multiples of 10:
- $47 + 19 = 47 + 20 - 1 = 66$
- $47 + 21 = 47 + 20 + 1 = 68$
Adding two-digit numbers:
- $47 + 23 = (40 + 20) + (7 + 3) = 60 + 10 = 70$
Subtraction Tricks
Subtracting 9: Subtract 10, then add 1
- $47 - 9 = 47 - 10 + 1 = 38$
Subtracting 11: Subtract 10, then subtract 1
- $47 - 11 = 47 - 10 - 1 = 36$
Subtracting near multiples of 10:
- $47 - 19 = 47 - 20 + 1 = 28$
- $47 - 21 = 47 - 20 - 1 = 26$
Multiplication Tricks
Multiplying by 5: Multiply by 10, then divide by 2
- $47 \times 5 = 470 \div 2 = 235$
Multiplying by 25: Multiply by 100, then divide by 4
- $47 \times 25 = 4700 \div 4 = 1175$
Multiplying by 11: Add the digits and place in the middle
- $47 \times 11 = 4(4+7)7 = 517$
Multiplying by 12: Multiply by 10, then add double the number
- $47 \times 12 = 470 + 94 = 564$
Division Tricks
Dividing by 5: Multiply by 2, then divide by 10
- $47 \div 5 = 94 \div 10 = 9.4$
Dividing by 25: Multiply by 4, then divide by 100
- $47 \div 25 = 188 \div 100 = 1.88$
Dividing by 4: Divide by 2 twice
- $47 \div 4 = 23.5 \div 2 = 11.75$
Squares and Square Roots
Perfect Squares to Memorize
| Number | Square | Number | Square |
|---|---|---|---|
| 1 | 1 | 16 | 256 |
| 2 | 4 | 17 | 289 |
| 3 | 9 | 18 | 324 |
| 4 | 16 | 19 | 361 |
| 5 | 25 | 20 | 400 |
| 6 | 36 | 25 | 625 |
| 7 | 49 | 30 | 900 |
| 8 | 64 | 35 | 1225 |
| 9 | 81 | 40 | 1600 |
| 10 | 100 | 50 | 2500 |
| 11 | 121 | 60 | 3600 |
| 12 | 144 | 70 | 4900 |
| 13 | 169 | 80 | 6400 |
| 14 | 196 | 90 | 8100 |
| 15 | 225 | 100 | 10000 |
Square Calculation Tricks
Squares ending in 5:
- $25^2 = 2 \times 3 = 6$, then add 25 = 625
- $35^2 = 3 \times 4 = 12$, then add 25 = 1225
Squares near perfect squares:
- $47^2 = 50^2 - 2(50)(3) + 3^2 = 2500 - 300 + 9 = 2209$
- $53^2 = 50^2 + 2(50)(3) + 3^2 = 2500 + 300 + 9 = 2809$
Square Root Estimation
For perfect squares: Use memorized values For other numbers: Use approximation
- $\sqrt{50} \approx 7.07$ (between $7^2 = 49$ and $8^2 = 64$)
- $\sqrt{120} \approx 10.95$ (between $10^2 = 100$ and $11^2 = 121$)
Fraction and Decimal Shortcuts
Common Fraction-Decimal Pairs
| Fraction | Decimal | Percent |
|---|---|---|
| $\frac{1}{2}$ | 0.5 | 50% |
| $\frac{1}{3}$ | 0.333… | 33.3% |
| $\frac{2}{3}$ | 0.666… | 66.6% |
| $\frac{1}{4}$ | 0.25 | 25% |
| $\frac{3}{4}$ | 0.75 | 75% |
| $\frac{1}{5}$ | 0.2 | 20% |
| $\frac{2}{5}$ | 0.4 | 40% |
| $\frac{3}{5}$ | 0.6 | 60% |
| $\frac{4}{5}$ | 0.8 | 80% |
| $\frac{1}{8}$ | 0.125 | 12.5% |
| $\frac{3}{8}$ | 0.375 | 37.5% |
| $\frac{5}{8}$ | 0.625 | 62.5% |
| $\frac{7}{8}$ | 0.875 | 87.5% |
Fraction Operations
Adding fractions with same denominator:
- $\frac{3}{7} + \frac{2}{7} = \frac{5}{7}$
Adding fractions with different denominators:
- $\frac{1}{3} + \frac{1}{4} = \frac{4}{12} + \frac{3}{12} = \frac{7}{12}$
Multiplying fractions:
- $\frac{2}{3} \times \frac{3}{4} = \frac{6}{12} = \frac{1}{2}$
Dividing fractions:
- $\frac{2}{3} \div \frac{3}{4} = \frac{2}{3} \times \frac{4}{3} = \frac{8}{9}$
Percent Calculations
Finding percentages:
- $20%$ of 150 = $0.2 \times 150 = 30$
- $15%$ of 200 = $0.15 \times 200 = 30$
Percentage increase/decrease:
- Increase 80 by 25%: $80 + 0.25 \times 80 = 80 + 20 = 100$
- Decrease 120 by 15%: $120 - 0.15 \times 120 = 120 - 18 = 102$
Special Number Patterns
Pythagorean Triples
| a | b | c | a² | b² | c² |
|---|---|---|---|---|---|
| 3 | 4 | 5 | 9 | 16 | 25 |
| 5 | 12 | 13 | 25 | 144 | 169 |
| 7 | 24 | 25 | 49 | 576 | 625 |
| 8 | 15 | 17 | 64 | 225 | 289 |
| 9 | 40 | 41 | 81 | 1600 | 1681 |
Powers of 2
| Power | Value | Power | Value |
|---|---|---|---|
| 2¹ | 2 | 2⁶ | 64 |
| 2² | 4 | 2⁷ | 128 |
| 2³ | 8 | 2⁸ | 256 |
| 2⁴ | 16 | 2⁹ | 512 |
| 2⁵ | 32 | 2¹⁰ | 1024 |
Powers of 10
| Power | Value | Power | Value |
|---|---|---|---|
| 10¹ | 10 | 10⁴ | 10,000 |
| 10² | 100 | 10⁵ | 100,000 |
| 10³ | 1,000 | 10⁶ | 1,000,000 |
Algebraic Shortcuts
Factoring Patterns
Difference of squares: $a^2 - b^2 = (a+b)(a-b)$
- $25 - 9 = 5^2 - 3^2 = (5+3)(5-3) = 8 \times 2 = 16$
Perfect square trinomials: $a^2 + 2ab + b^2 = (a+b)^2$
- $x^2 + 6x + 9 = (x+3)^2$
Sum/difference of cubes: $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$
- $8 - 1 = 2^3 - 1^3 = (2-1)(4+2+1) = 1 \times 7 = 7$
Quick Substitution
When $x = 2$:
- $x^2 = 4$
- $x^3 = 8$
- $2x = 4$
- $3x = 6$
When $x = 3$:
- $x^2 = 9$
- $x^3 = 27$
- $2x = 6$
- $3x = 9$
Practice Exercises
Basic Arithmetic
- $47 + 29 = ?$
- $73 - 28 = ?$
- $24 \times 5 = ?$
- $156 \div 4 = ?$
Squares and Roots
- $17^2 = ?$
- $23^2 = ?$
- $\sqrt{144} = ?$
- $\sqrt{225} = ?$
Fractions and Percents
- $\frac{3}{8} + \frac{1}{4} = ?$
- $\frac{2}{3} \times \frac{3}{4} = ?$
- $25%$ of 80 = ?
- $15%$ of 120 = ?
Algebraic Shortcuts
- If $x = 4$, find $x^2 + 2x + 1$
- If $x = 5$, find $x^2 - 4$
- Factor $x^2 - 16$
- Factor $x^2 + 8x + 16$
Next: Error Log Template
Previous: Diagramming and Estimation
Back to: Strategy & Tactics